Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 2, 731 - 743, 31.12.2021
https://doi.org/10.31801/cfsuasmas.865647

Abstract

References

  • Arnold, R., Chukova, S., Hayakawa, Y., Marshall, S., Geometric-like processes: An overview and some reliability applications, Reliability Engineering and System Safety, 201 (2020). https://doi.org/10.1016/j.ress.2020.106990.
  • Aydogdu, H., Altındag, Ö., Computation of the mean value and variance functions in geometric process, Journal of Statistical Computation and Simulation, 86:5 (2015), 986-995. https://doi.org/10.1080/00949655.2015.1047778.
  • Aydogdu, H., Karabulut, I., Power series expansions for the distribution and mean value of a geometric process with Weibull interarrival times, Naval Research Logistics, 61 (2014), 599-603. https://doi.org/10.1002/nav.21605.
  • Aydogdu, H., Karabulut, I., ¸Sen E., On the exact distribution and mean value function of a geometric process with exponential interarrival times, Statistics and Probability Letters, 83 (2013), 2577-2582. https://doi.org/10.1016/j.spl.2013.08.003.
  • Bai, J., Pham, H., Repair-limit risk-free warranty policies with imperfect repair, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 35:6 (2005), 756-772. https://doi.org/10.1109/TSMCA.2005.851343.
  • Braun, W. J., Li, W., Zhao, Y. Q., Properties of the geometric and related processes, Naval Research Logistics, 52, (2005), 607-616, https://doi.org/10.1002/nav.20099.
  • Chan, J. S., Choy, S. B., Lam, C. P., Modeling electricity price using a threshold conditional autoregressive geometric process jump model, Communications in Statistics-Theory and Methods, 43 10-12 (2014), 2505-2515. https://doi.org/10.1080/03610926.2013.788714.
  • Chan, J. S., Yu, P. L., Lam, Y., Ho, A. P., Modelling SARS data using threshold geometric process. Statistics in Medicine, 25:11 (2006), 1826-1839. https://doi.org/10.1002/sim.2376.
  • Lam, Y., Geometric processes and replacement problem, Acta Mathematicae Applicatae Sinica, 4 (1988), 366-377. https://doi.org/10.1007/BF02007241.
  • Lam, Y., Zhu, L. X., Chan, J. S. K., Liu, Q., Analysis of data from a series of events by a geometric process model, Acta Mathematicae Applicatae Sinica, 20(2) (2004), 263-82. https://doi.org/10.1007/s10255-004-0167-x.
  • Lam, Y., The Geometric Process and Its Applications, Singapore, Word Scientific, 2007.
  • Park, M., Pham, H., Warranty cost analyses using quasi-renewal processes for multicomponent systems, IEEE Trans Syst Man Cybern, Part A: Systems and Humans, 40:6 (2010), 1329-1340. https://doi.org/10.1109/TSMCA.2010.2046728.
  • Pekalp, M. H., Aydogdu, H., Türkman, K. F., Discriminating between some lifetime distributions in geometric counting processes, Communications in Statistics, Simulation and Computation, (2019). https://doi.org/10.1080/03610918.2019.1657452.
  • Pekalp, M. H., Aydogdu, H., An asymptotic solution of the integral equation for the second moment function in geometric processes, Journal of Computational and Applied Mathematics, 353 (2019), 179-190. https://doi.org/10.1016/j.cam.2018.12.014.
  • Pekalp, M. H., Aydogdu, H., An integral equation for the second moment function of a geometric process and its numerical solution, Naval Research Logistics, 65(2) (2018), 176-184. https://doi.org/10.1002/nav.21791.
  • Pham H., Wang H., A quasi-renewal process for software reliability and testing costs, IEEE Trans Syst Man Cybern, Part A: Systems and Humans, 31:6 (2001), 623-631. https://doi.org/10.1109/3468.983418.
  • Tang, Y., Lam, Y., Numerical solution to an integral equation in geometric process, Journal of Statistical Computation and Simulation, 77 (2007), 549-560. https://doi.org/10.1080/10629360600565343.
  • Wang, H., Pham, H., A quasi-renewal process and its applications in imperfect maintenance, Internat J Systems Sci., 27 (1996), 1055-1062. https://doi.org/10.1080/00207729608929311.
  • Wu, D., Peng, R., Wu, S., A review of the extensions of the geometric process, Applications and Challenges. Quality and Reliability Engineering International, 36 (2020), 436-446. https://doi.org/10.1002/qre.2587.
  • Wu, S., Doubly geometric process and applications, Journal of the Operational Research Society, 69 (1) (2018), 66-67. https://doi.org/10.1057/s41274-017-0217-4.
  • Wu, S., Scarf, P., Decline and repair, and covariate effects, European Journal of Operational Research, 244 (1) (2015), 219-226. https://doi.org/10.1016/j.ejor.2015.01.041.
  • Wu, S., Wang, G., The semi-geometric process and some properties, IMA Journal of Management Mathematics, 29 (2018), 229-245. https://doi.org/10.1093/imaman/dpx002.
  • Zhang, M., Xie, M., Gaudoin, O., A bivariate maintenance policy for multi-state repairable systems with monotone process, IEEE Transactions of Reliability, 62(4) (2013), 876-886. https://doi.org/10.1109/TR.2013.2285042.

Numerical solution to an integral equation for the kth moment function of a geometric process

Year 2021, Volume: 70 Issue: 2, 731 - 743, 31.12.2021
https://doi.org/10.31801/cfsuasmas.865647

Abstract

In this paper, an integral equation for the kth moment function of a geometric process is derived as a generalization of the lower-order moments of the process. We propose a general solution to solve this integral equation by using the numerical method, namely trapezoidal integration rule. The general solution is reduced to the numerical solution of the integral equations which will be given for the third and fourth moment functions to compute the skewness and kurtosis of a geometric process. To illustrate the numerical method, we assume gamma, Weibull and lognormal distributions for the first interarrival time of the geometric process.

References

  • Arnold, R., Chukova, S., Hayakawa, Y., Marshall, S., Geometric-like processes: An overview and some reliability applications, Reliability Engineering and System Safety, 201 (2020). https://doi.org/10.1016/j.ress.2020.106990.
  • Aydogdu, H., Altındag, Ö., Computation of the mean value and variance functions in geometric process, Journal of Statistical Computation and Simulation, 86:5 (2015), 986-995. https://doi.org/10.1080/00949655.2015.1047778.
  • Aydogdu, H., Karabulut, I., Power series expansions for the distribution and mean value of a geometric process with Weibull interarrival times, Naval Research Logistics, 61 (2014), 599-603. https://doi.org/10.1002/nav.21605.
  • Aydogdu, H., Karabulut, I., ¸Sen E., On the exact distribution and mean value function of a geometric process with exponential interarrival times, Statistics and Probability Letters, 83 (2013), 2577-2582. https://doi.org/10.1016/j.spl.2013.08.003.
  • Bai, J., Pham, H., Repair-limit risk-free warranty policies with imperfect repair, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 35:6 (2005), 756-772. https://doi.org/10.1109/TSMCA.2005.851343.
  • Braun, W. J., Li, W., Zhao, Y. Q., Properties of the geometric and related processes, Naval Research Logistics, 52, (2005), 607-616, https://doi.org/10.1002/nav.20099.
  • Chan, J. S., Choy, S. B., Lam, C. P., Modeling electricity price using a threshold conditional autoregressive geometric process jump model, Communications in Statistics-Theory and Methods, 43 10-12 (2014), 2505-2515. https://doi.org/10.1080/03610926.2013.788714.
  • Chan, J. S., Yu, P. L., Lam, Y., Ho, A. P., Modelling SARS data using threshold geometric process. Statistics in Medicine, 25:11 (2006), 1826-1839. https://doi.org/10.1002/sim.2376.
  • Lam, Y., Geometric processes and replacement problem, Acta Mathematicae Applicatae Sinica, 4 (1988), 366-377. https://doi.org/10.1007/BF02007241.
  • Lam, Y., Zhu, L. X., Chan, J. S. K., Liu, Q., Analysis of data from a series of events by a geometric process model, Acta Mathematicae Applicatae Sinica, 20(2) (2004), 263-82. https://doi.org/10.1007/s10255-004-0167-x.
  • Lam, Y., The Geometric Process and Its Applications, Singapore, Word Scientific, 2007.
  • Park, M., Pham, H., Warranty cost analyses using quasi-renewal processes for multicomponent systems, IEEE Trans Syst Man Cybern, Part A: Systems and Humans, 40:6 (2010), 1329-1340. https://doi.org/10.1109/TSMCA.2010.2046728.
  • Pekalp, M. H., Aydogdu, H., Türkman, K. F., Discriminating between some lifetime distributions in geometric counting processes, Communications in Statistics, Simulation and Computation, (2019). https://doi.org/10.1080/03610918.2019.1657452.
  • Pekalp, M. H., Aydogdu, H., An asymptotic solution of the integral equation for the second moment function in geometric processes, Journal of Computational and Applied Mathematics, 353 (2019), 179-190. https://doi.org/10.1016/j.cam.2018.12.014.
  • Pekalp, M. H., Aydogdu, H., An integral equation for the second moment function of a geometric process and its numerical solution, Naval Research Logistics, 65(2) (2018), 176-184. https://doi.org/10.1002/nav.21791.
  • Pham H., Wang H., A quasi-renewal process for software reliability and testing costs, IEEE Trans Syst Man Cybern, Part A: Systems and Humans, 31:6 (2001), 623-631. https://doi.org/10.1109/3468.983418.
  • Tang, Y., Lam, Y., Numerical solution to an integral equation in geometric process, Journal of Statistical Computation and Simulation, 77 (2007), 549-560. https://doi.org/10.1080/10629360600565343.
  • Wang, H., Pham, H., A quasi-renewal process and its applications in imperfect maintenance, Internat J Systems Sci., 27 (1996), 1055-1062. https://doi.org/10.1080/00207729608929311.
  • Wu, D., Peng, R., Wu, S., A review of the extensions of the geometric process, Applications and Challenges. Quality and Reliability Engineering International, 36 (2020), 436-446. https://doi.org/10.1002/qre.2587.
  • Wu, S., Doubly geometric process and applications, Journal of the Operational Research Society, 69 (1) (2018), 66-67. https://doi.org/10.1057/s41274-017-0217-4.
  • Wu, S., Scarf, P., Decline and repair, and covariate effects, European Journal of Operational Research, 244 (1) (2015), 219-226. https://doi.org/10.1016/j.ejor.2015.01.041.
  • Wu, S., Wang, G., The semi-geometric process and some properties, IMA Journal of Management Mathematics, 29 (2018), 229-245. https://doi.org/10.1093/imaman/dpx002.
  • Zhang, M., Xie, M., Gaudoin, O., A bivariate maintenance policy for multi-state repairable systems with monotone process, IEEE Transactions of Reliability, 62(4) (2013), 876-886. https://doi.org/10.1109/TR.2013.2285042.
There are 23 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Mustafa Hilmi Pekalp 0000-0002-5183-8394

Ayşenur Aydoğdu This is me 0000-0001-6439-8431

Publication Date December 31, 2021
Submission Date January 20, 2021
Acceptance Date April 7, 2021
Published in Issue Year 2021 Volume: 70 Issue: 2

Cite

APA Pekalp, M. H., & Aydoğdu, A. (2021). Numerical solution to an integral equation for the kth moment function of a geometric process. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 731-743. https://doi.org/10.31801/cfsuasmas.865647
AMA Pekalp MH, Aydoğdu A. Numerical solution to an integral equation for the kth moment function of a geometric process. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):731-743. doi:10.31801/cfsuasmas.865647
Chicago Pekalp, Mustafa Hilmi, and Ayşenur Aydoğdu. “Numerical Solution to an Integral Equation for the Kth Moment Function of a Geometric Process”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 731-43. https://doi.org/10.31801/cfsuasmas.865647.
EndNote Pekalp MH, Aydoğdu A (December 1, 2021) Numerical solution to an integral equation for the kth moment function of a geometric process. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 731–743.
IEEE M. H. Pekalp and A. Aydoğdu, “Numerical solution to an integral equation for the kth moment function of a geometric process”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 731–743, 2021, doi: 10.31801/cfsuasmas.865647.
ISNAD Pekalp, Mustafa Hilmi - Aydoğdu, Ayşenur. “Numerical Solution to an Integral Equation for the Kth Moment Function of a Geometric Process”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 731-743. https://doi.org/10.31801/cfsuasmas.865647.
JAMA Pekalp MH, Aydoğdu A. Numerical solution to an integral equation for the kth moment function of a geometric process. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:731–743.
MLA Pekalp, Mustafa Hilmi and Ayşenur Aydoğdu. “Numerical Solution to an Integral Equation for the Kth Moment Function of a Geometric Process”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 731-43, doi:10.31801/cfsuasmas.865647.
Vancouver Pekalp MH, Aydoğdu A. Numerical solution to an integral equation for the kth moment function of a geometric process. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):731-43.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.