Year 2021,
Volume: 70 Issue: 2, 924 - 939, 31.12.2021
Mediha Örkcü
,
Özge Dalmanoğlu
,
Fatma Büşra Hatipoğlu
References
- Acar, E., Karahan, D., Kirci Serenbay, S., Approximation for the Bernstein operator of max-product kind in symmetric range, Khayyam J. Math., 6 (2) (2020), 257-273. DOI:10.22034/kjm.2020.109823
- Agratini, O., On a sequence of linear and positive operators, Facta Univ. Ser. Math. Inform., 14 (1999), 41-48.
- Bede, B., Nobuhara, H., Fodor, J., Hirota, K., Max-product Shepard approximation operators, Journal of Advanced Computational Intelligence and Intelligent Informatics, 10 (4) (2006), 494-497. DOI:10.20965/jaciii.2006.p0494
- Bede, B., Nobuhara, H., Dankova , M., Di Nola, A., Approximation by pseudo- linear operators, Fuzzy Sets and Systems, 159 (2008), 804-820. DOI:10.1016/j.fss.2007.11.007
- Bede, B., Gal, S. G., Approximation by nonlinear Bernstein and Favard-Szasz-Mirakjan operators of max-product kind, Journal of Concrete and Applicable Mathematics, 8 (2010), 193-207.
- Bede, B., Coroianu, L., Gal, S. G., Approximation by truncated Favard-Szasz-Mirakjan operator of max-product kind, Demonstratio Mathematica, 44 (1) (2011), 105-122. DOI:10.1515/dema-2013-0300
- Bede, B., Coroianu, L., Gal, S. G., Approximation and shape preserving properties of the Bernstein operator of max-product kind, Int. J. Math. Math. Sci., 590589, (2009). DOI:10.1155/2009/590589
- Coroianu, L.,Gal, S. G., Lp-approximation by truncated max-product sampling operators of Kantorovich-type based on Fejer kernel, Journal of Integral Equations and Applications, 29 (2) (2017), 349-364. DOI: 10.1216/JIE-2017-29-2-349
- Coroianu, L., Gal, S. G., Approximation by truncated max-product operators of Kantorovich-type based on generalized $(\phi,\psi)$-kernels, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.5262.
- Coroianu, L., Gal, S. G., Approximation by max-product operators of Kantorovich type, Studia Universitatis Babes-Bolyai, Mathematica, 64 (2) (2019), 207-223. DOI:10.24193/subbmath.2019.2.07
- Costarelli, D., Vinti, G., Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting, Math Slovaca, 67 (6) (2017), 1469-1480.
DOI:10.1515/ms-2017-0063
- Costarelli, D., Vinti, G., Estimates for the neural network operators of the max-product type with continuous and p-integrable functions, Results Math., 73 (12) (2018). DOI:10.1007/s00025-018-0790-0
- Costarelli, D., Vinti, G., Approximation by max-product neural network operators of Kantorovich type, Results Math., 69 (1-2) (2016), 505-519. DOI: 10.1007/s00025-016-0546-7
- Costarelli, D., Vinti, G., Saturation classes for max-product neural network operators activated by sigmoidal functions, Results Math, 72 (3), (2017), 1555-1569. DOI: 10.1007/s00025-
017-0692-6
- Costarelli, D., Vinti, G., Max-product neural network and quasi interpolation operators activated by sigmoidal functions, J. Approx. Theory, 209 (2016), 1-22. DOI:10.1016/j.jat.2016.05.001
- Duman, O., Statistical convergence of max-product approximating operators, Turkish Journal of Mathematics, 34 (4) (2010), 501-514. DOI:10.3906/mat-0807-32
- Gal, S. G., Shape-Preserving Approximation by Real and Complex Polynomials, Birkhauser Publ. Co., Boston, Basel, Berlin, 2008. DOI: 10.1007/978-0-8176-4703-2
- Güngör, Ş. Y., İspir N., Quantitative estimates for generalized Szasz operators of max product kind, Results in Mathematics, 70 (3) (2016), 447-456. DOI: 10.1007/s00025-016-0579-y
- Güngör, Ş. Y., İspir N., Approximation by Bernstein-Chlodowsky operators of max-product kind, Mathematical Communications, 23 (2018), 205-225.
- Holhoş, A., Weighted approximation of functions by Meyer-König and Zeller operators of max-product type, Numerical Functional Analysis and Optimization, 39 (6) (2018), 689-703.
DOI: 10.1080/01630563.2017.1413386
- Holhoş, A., Approximation of functions by Favard-Szasz-Mirakyan operators of max-product type in weighted spaces, Filomat, 32 (7) (2018), 2567-2576. DOI: 10.2298/FIL1807567H
- Karakuş, S., Demirci, K., Statistical $\sigma$ approximation to max-product operators, Computers and Mathematics with Applications, 61 (4) (2011), 1024-1031. DOI:10.1016/j.camwa.2010.12.052
- Lupaş, A., The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Muller et al., eds.), Akademie
Verlag, Berlin, (1995), 201-229.
Approximation by truncated Lupaş operators of max-product kind
Year 2021,
Volume: 70 Issue: 2, 924 - 939, 31.12.2021
Mediha Örkcü
,
Özge Dalmanoğlu
,
Fatma Büşra Hatipoğlu
Abstract
The goals of the present paper are to introduce truncated Lupaş type operators
of max-product kind and give an estimation for the degree of approximation with respect to
first modulus of continuity function. We prove that this estimate can not be
improved; on the other hand, for some subclasses of functions, better degree
of approximation is obtained. We also showed the piecewise convexity of the constructed operators on the interval [0,1].
References
- Acar, E., Karahan, D., Kirci Serenbay, S., Approximation for the Bernstein operator of max-product kind in symmetric range, Khayyam J. Math., 6 (2) (2020), 257-273. DOI:10.22034/kjm.2020.109823
- Agratini, O., On a sequence of linear and positive operators, Facta Univ. Ser. Math. Inform., 14 (1999), 41-48.
- Bede, B., Nobuhara, H., Fodor, J., Hirota, K., Max-product Shepard approximation operators, Journal of Advanced Computational Intelligence and Intelligent Informatics, 10 (4) (2006), 494-497. DOI:10.20965/jaciii.2006.p0494
- Bede, B., Nobuhara, H., Dankova , M., Di Nola, A., Approximation by pseudo- linear operators, Fuzzy Sets and Systems, 159 (2008), 804-820. DOI:10.1016/j.fss.2007.11.007
- Bede, B., Gal, S. G., Approximation by nonlinear Bernstein and Favard-Szasz-Mirakjan operators of max-product kind, Journal of Concrete and Applicable Mathematics, 8 (2010), 193-207.
- Bede, B., Coroianu, L., Gal, S. G., Approximation by truncated Favard-Szasz-Mirakjan operator of max-product kind, Demonstratio Mathematica, 44 (1) (2011), 105-122. DOI:10.1515/dema-2013-0300
- Bede, B., Coroianu, L., Gal, S. G., Approximation and shape preserving properties of the Bernstein operator of max-product kind, Int. J. Math. Math. Sci., 590589, (2009). DOI:10.1155/2009/590589
- Coroianu, L.,Gal, S. G., Lp-approximation by truncated max-product sampling operators of Kantorovich-type based on Fejer kernel, Journal of Integral Equations and Applications, 29 (2) (2017), 349-364. DOI: 10.1216/JIE-2017-29-2-349
- Coroianu, L., Gal, S. G., Approximation by truncated max-product operators of Kantorovich-type based on generalized $(\phi,\psi)$-kernels, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.5262.
- Coroianu, L., Gal, S. G., Approximation by max-product operators of Kantorovich type, Studia Universitatis Babes-Bolyai, Mathematica, 64 (2) (2019), 207-223. DOI:10.24193/subbmath.2019.2.07
- Costarelli, D., Vinti, G., Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting, Math Slovaca, 67 (6) (2017), 1469-1480.
DOI:10.1515/ms-2017-0063
- Costarelli, D., Vinti, G., Estimates for the neural network operators of the max-product type with continuous and p-integrable functions, Results Math., 73 (12) (2018). DOI:10.1007/s00025-018-0790-0
- Costarelli, D., Vinti, G., Approximation by max-product neural network operators of Kantorovich type, Results Math., 69 (1-2) (2016), 505-519. DOI: 10.1007/s00025-016-0546-7
- Costarelli, D., Vinti, G., Saturation classes for max-product neural network operators activated by sigmoidal functions, Results Math, 72 (3), (2017), 1555-1569. DOI: 10.1007/s00025-
017-0692-6
- Costarelli, D., Vinti, G., Max-product neural network and quasi interpolation operators activated by sigmoidal functions, J. Approx. Theory, 209 (2016), 1-22. DOI:10.1016/j.jat.2016.05.001
- Duman, O., Statistical convergence of max-product approximating operators, Turkish Journal of Mathematics, 34 (4) (2010), 501-514. DOI:10.3906/mat-0807-32
- Gal, S. G., Shape-Preserving Approximation by Real and Complex Polynomials, Birkhauser Publ. Co., Boston, Basel, Berlin, 2008. DOI: 10.1007/978-0-8176-4703-2
- Güngör, Ş. Y., İspir N., Quantitative estimates for generalized Szasz operators of max product kind, Results in Mathematics, 70 (3) (2016), 447-456. DOI: 10.1007/s00025-016-0579-y
- Güngör, Ş. Y., İspir N., Approximation by Bernstein-Chlodowsky operators of max-product kind, Mathematical Communications, 23 (2018), 205-225.
- Holhoş, A., Weighted approximation of functions by Meyer-König and Zeller operators of max-product type, Numerical Functional Analysis and Optimization, 39 (6) (2018), 689-703.
DOI: 10.1080/01630563.2017.1413386
- Holhoş, A., Approximation of functions by Favard-Szasz-Mirakyan operators of max-product type in weighted spaces, Filomat, 32 (7) (2018), 2567-2576. DOI: 10.2298/FIL1807567H
- Karakuş, S., Demirci, K., Statistical $\sigma$ approximation to max-product operators, Computers and Mathematics with Applications, 61 (4) (2011), 1024-1031. DOI:10.1016/j.camwa.2010.12.052
- Lupaş, A., The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Muller et al., eds.), Akademie
Verlag, Berlin, (1995), 201-229.