Research Article
BibTex RIS Cite
Year 2022, Volume: 71 Issue: 1, 252 - 272, 30.03.2022
https://doi.org/10.31801/cfsuasmas.744141

Abstract

References

  • Alizadeh, M., MirMostafaee, S. M. T. K., Ghosh, I., A new extension of power Lindley distribution for analyzing bimodal data, Chilean Journal of Statistics, 8(1) (2017), 67–86.
  • Almazah, M. M. A., Erbayram, T., Akdogan, Y., Al Sobhi, M. M., Afify, A. Z., A new extended geometric distribution: properties, regression model, and actuarial applications, Mathematics, 9(12) (2021), 1336. https://doi.org/10.3390/math9121336
  • Altun, G., Alizadeh, M., Altun, E., Ozel, G., Odd Burr Lindley distribution with properties and applications, Hacettepe Journal of Mathematics and Statistics, 46(2) (2017), 255–276. https://doi.org/10.15672/HJMS.2017.410
  • Asgharzadeh, A., Nadarajah, S., Sharafi, F., Weibull Lindley distribution, REVSTAT Statistical Journal, 16 (2018), 87–113.
  • Bebbington, M., Lai, C. D., Zitikis, R., A flexible Weibull extension, Reliability Engineering and System Safety, 92(6) (2007), 719–726. https://doi.org/10.1016/j.ress.2006.03.004
  • Bakouch, H. S., Al-Zahrani, B. M., Al-Shomrani, A. A., Marchi, V. A., Louzada, F., An extended Lindley distribution, Journal of the Korean Statistical Society, 41(1) (2012), 75–85. https://doi.org/10.1016/j.jkss.2011.06.002
  • Bekker, A., Roux, J., Mostert, P., A generalization of the compound Rayleigh distribution: using a Bayesian methods on cancer survival times, Communications in Statistics - Theory and Methods, 29 (2000), 1419–1433. https://doi.org/10.1080/03610920008832554
  • Carrasco, J. M., Ortega, E. M., Cordeiro, G. M., A generalized modified Weibull distribution for lifetime modeling, Computational Statistics & Data Analysis, 53(2) (2008), 450–462. http://dx.doi.org/10.1016/j.csda.2008.08.023
  • Cheng, R. C. H., Amin, N. A. K., Maximum product of spacings estimation with application to the lognormal distribution, Mathematical Reports, (1979), 791.
  • Fraser, D.A S., Probability and Statistics: Theory and Applications, North Scituate MA: Duxbury Press, 1976.
  • Gomez-Deniz, E., Calderin-Ojeda, E., The discrete Lindley distribution: properties and applications, Journal of Statistical Computation and Simulation, 81(11) (2011), 1405-1416. https://doi.org/10.1080/00949655.2010.487825
  • Ghitany, M.E., Al-Mutairi, D.K., Balakrishnan, N., Al-Enezi, L.J., Power Lindley distribution and associated inference, Computational Statistics and Data Analysis, 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026
  • Karakaya, K., Tanıs, C. Estimating the parameters of Xgamma Weibull distribution, Adıyaman University Journal of Science, 10(2) (2020), 557–571. https://doi.org/10.37094/adyujsci.781069
  • Karakaya, K., Tanıs, C. Different methods of estimation for the one parameter Akash distribution, Cumhuriyet Science Journal, 41(4) (2020), 944–950. https://doi.org/10.17776/csj.766011
  • Korkmaz, M. C., Hamedani, G. G., An alternative distribution to Lindley and Power Lindley distributions with characterizations, different estimation methods and data applications, Mathematica Slovaca, 70(4) (2020), 953–978. https://doi.org/10.1515/ms-2017-0406
  • Kuş, C., Akdoğan, Y., Asgharzadeh, A., Kınacı, İ., Karakaya, K., Binomial-discrete Lindley distribution, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1) (2018), 401–411.
  • Lai, C. D., Xie, M., Murthy, D. N. P., A modified Weibull distribution, IEEE Transactions on Reliability, 52(1) (2003), 33–37.
  • Lindley, D.V., Fiducial distributions and Bayes theorem, Journal of the Royal Statistical Society Series B, 20 (1958), 102–107.
  • Lucena, S. E., Silva, A. H. A., Cordeiro, G. M., The transmuted generalized gamma distribution: properties and application, Journal of Data Science, 13(1) (2015), 187–206.
  • Merovci, F., Sharma, V. K., The beta-Lindley distribution: properties and applications, Journal of Applied Mathematics, Article ID 198951, (2014), 1–10. https://doi.org/10.1155/2014/198951
  • MirMostafaee, S. M. T. K., Mahdizadeh, M., Nadarajah, S., The beta Lindley distribution, Journal of Data Science, 13(3) (2015), 603–625.
  • Nadarajah, S., Bakouch, H. S., Tahmasbi, R., A generalized Lindley distribution, Sankhya B, 73(2) (2011), 331–359. http://doi.org/10.1007/s13571-011-0025-9
  • Nichols, M.D., Padgett, W. J., A bootstrap control chart for Weibull percentiles, Quality and Reliability Engineering International, 22 (2006), 141–151. http://doi.org/10.1002/qre.691
  • Ozel, G., Alizadeh, M., Cakmakyapan, S., Hamedani, G. G., Ortega, E. M., Cancho, V. G., The odd log-logistic Lindley Poisson model for lifetime data, Communications in Statistics-Simulation and Computation, 46(8) (2017), 6513–6537. https://doi.org/10.1080/03610918.2016.1206931
  • Ramesh, C., Gupta, S.N.U.A., Kirmani, On order relations between reliability measures, Stochastic Models, 3(1) (1987), 149–156.
  • Salman S. M., Prayoto, S., Total time on test plot analysis for mechanical components of the RSG-GAS reactor, Atom Indones, 25(2) (1999), 155–161.
  • Shaked, M., Shanthikumar, J. G., Stochastic Orders, Springer Verlag, New York, 2007.
  • Stacy, E. W., A generalization of the gamma distribution, The Annals of Mathematical Statistics, 33(3) (1962), 1187–1192.
  • Tanış, C., On transmuted power function distribution: characterization, risk measures, and estimation, Journal of New Theory, 34 (2021), 72–81.
  • Tanış, C., Karakaya, K., On estimating parameters of Lindley-geometric distribution, Eskisehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 22(2) (2021), 160–167. https://doi.org/10.18038/estubtda.816836
  • Warahena-Liyanage, G., Pararai, M., A generalized power Lindley distribution with applications, Asian Journal of Mathematics and Applications, (2014).
  • Zakerzadeh, H., Dolati, A., Generalized Lindley distribution, Journal of Mathematical Extension, 3(2) (2009).

Modified-Lindley distribution and its applications to the real data

Year 2022, Volume: 71 Issue: 1, 252 - 272, 30.03.2022
https://doi.org/10.31801/cfsuasmas.744141

Abstract

In this paper, a new three-parameter lifetime distribution is proposed by mixing modified Weibull and generalized gamma distributions. The point estimation on the distribution parameters are discussed through several estimators. The interval estimation is also studied with two methods based on asymptotic normality and likelihood ratio. A Monte Carlo simulation study is performed to evaluate the biases and mean square errors behaviors of point estimates for a different sample of size. A simulation study is also conducted to investigate the coverage probabilities of confidence intervals. The distribution modeling analyses are provided based on several real data sets to demonstrate the fitting ability of the introduced distribution.

References

  • Alizadeh, M., MirMostafaee, S. M. T. K., Ghosh, I., A new extension of power Lindley distribution for analyzing bimodal data, Chilean Journal of Statistics, 8(1) (2017), 67–86.
  • Almazah, M. M. A., Erbayram, T., Akdogan, Y., Al Sobhi, M. M., Afify, A. Z., A new extended geometric distribution: properties, regression model, and actuarial applications, Mathematics, 9(12) (2021), 1336. https://doi.org/10.3390/math9121336
  • Altun, G., Alizadeh, M., Altun, E., Ozel, G., Odd Burr Lindley distribution with properties and applications, Hacettepe Journal of Mathematics and Statistics, 46(2) (2017), 255–276. https://doi.org/10.15672/HJMS.2017.410
  • Asgharzadeh, A., Nadarajah, S., Sharafi, F., Weibull Lindley distribution, REVSTAT Statistical Journal, 16 (2018), 87–113.
  • Bebbington, M., Lai, C. D., Zitikis, R., A flexible Weibull extension, Reliability Engineering and System Safety, 92(6) (2007), 719–726. https://doi.org/10.1016/j.ress.2006.03.004
  • Bakouch, H. S., Al-Zahrani, B. M., Al-Shomrani, A. A., Marchi, V. A., Louzada, F., An extended Lindley distribution, Journal of the Korean Statistical Society, 41(1) (2012), 75–85. https://doi.org/10.1016/j.jkss.2011.06.002
  • Bekker, A., Roux, J., Mostert, P., A generalization of the compound Rayleigh distribution: using a Bayesian methods on cancer survival times, Communications in Statistics - Theory and Methods, 29 (2000), 1419–1433. https://doi.org/10.1080/03610920008832554
  • Carrasco, J. M., Ortega, E. M., Cordeiro, G. M., A generalized modified Weibull distribution for lifetime modeling, Computational Statistics & Data Analysis, 53(2) (2008), 450–462. http://dx.doi.org/10.1016/j.csda.2008.08.023
  • Cheng, R. C. H., Amin, N. A. K., Maximum product of spacings estimation with application to the lognormal distribution, Mathematical Reports, (1979), 791.
  • Fraser, D.A S., Probability and Statistics: Theory and Applications, North Scituate MA: Duxbury Press, 1976.
  • Gomez-Deniz, E., Calderin-Ojeda, E., The discrete Lindley distribution: properties and applications, Journal of Statistical Computation and Simulation, 81(11) (2011), 1405-1416. https://doi.org/10.1080/00949655.2010.487825
  • Ghitany, M.E., Al-Mutairi, D.K., Balakrishnan, N., Al-Enezi, L.J., Power Lindley distribution and associated inference, Computational Statistics and Data Analysis, 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026
  • Karakaya, K., Tanıs, C. Estimating the parameters of Xgamma Weibull distribution, Adıyaman University Journal of Science, 10(2) (2020), 557–571. https://doi.org/10.37094/adyujsci.781069
  • Karakaya, K., Tanıs, C. Different methods of estimation for the one parameter Akash distribution, Cumhuriyet Science Journal, 41(4) (2020), 944–950. https://doi.org/10.17776/csj.766011
  • Korkmaz, M. C., Hamedani, G. G., An alternative distribution to Lindley and Power Lindley distributions with characterizations, different estimation methods and data applications, Mathematica Slovaca, 70(4) (2020), 953–978. https://doi.org/10.1515/ms-2017-0406
  • Kuş, C., Akdoğan, Y., Asgharzadeh, A., Kınacı, İ., Karakaya, K., Binomial-discrete Lindley distribution, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1) (2018), 401–411.
  • Lai, C. D., Xie, M., Murthy, D. N. P., A modified Weibull distribution, IEEE Transactions on Reliability, 52(1) (2003), 33–37.
  • Lindley, D.V., Fiducial distributions and Bayes theorem, Journal of the Royal Statistical Society Series B, 20 (1958), 102–107.
  • Lucena, S. E., Silva, A. H. A., Cordeiro, G. M., The transmuted generalized gamma distribution: properties and application, Journal of Data Science, 13(1) (2015), 187–206.
  • Merovci, F., Sharma, V. K., The beta-Lindley distribution: properties and applications, Journal of Applied Mathematics, Article ID 198951, (2014), 1–10. https://doi.org/10.1155/2014/198951
  • MirMostafaee, S. M. T. K., Mahdizadeh, M., Nadarajah, S., The beta Lindley distribution, Journal of Data Science, 13(3) (2015), 603–625.
  • Nadarajah, S., Bakouch, H. S., Tahmasbi, R., A generalized Lindley distribution, Sankhya B, 73(2) (2011), 331–359. http://doi.org/10.1007/s13571-011-0025-9
  • Nichols, M.D., Padgett, W. J., A bootstrap control chart for Weibull percentiles, Quality and Reliability Engineering International, 22 (2006), 141–151. http://doi.org/10.1002/qre.691
  • Ozel, G., Alizadeh, M., Cakmakyapan, S., Hamedani, G. G., Ortega, E. M., Cancho, V. G., The odd log-logistic Lindley Poisson model for lifetime data, Communications in Statistics-Simulation and Computation, 46(8) (2017), 6513–6537. https://doi.org/10.1080/03610918.2016.1206931
  • Ramesh, C., Gupta, S.N.U.A., Kirmani, On order relations between reliability measures, Stochastic Models, 3(1) (1987), 149–156.
  • Salman S. M., Prayoto, S., Total time on test plot analysis for mechanical components of the RSG-GAS reactor, Atom Indones, 25(2) (1999), 155–161.
  • Shaked, M., Shanthikumar, J. G., Stochastic Orders, Springer Verlag, New York, 2007.
  • Stacy, E. W., A generalization of the gamma distribution, The Annals of Mathematical Statistics, 33(3) (1962), 1187–1192.
  • Tanış, C., On transmuted power function distribution: characterization, risk measures, and estimation, Journal of New Theory, 34 (2021), 72–81.
  • Tanış, C., Karakaya, K., On estimating parameters of Lindley-geometric distribution, Eskisehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 22(2) (2021), 160–167. https://doi.org/10.18038/estubtda.816836
  • Warahena-Liyanage, G., Pararai, M., A generalized power Lindley distribution with applications, Asian Journal of Mathematics and Applications, (2014).
  • Zakerzadeh, H., Dolati, A., Generalized Lindley distribution, Journal of Mathematical Extension, 3(2) (2009).
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Coşkun Kuş 0000-0002-7176-0176

Mustafa Çağatay Korkmaz 0000-0003-3302-0705

İsmail Kınacı 0000-0002-0992-4133

Kadir Karakaya 0000-0002-0781-3587

Yunus Akdoğan 0000-0003-3520-7493

Publication Date March 30, 2022
Submission Date May 28, 2020
Acceptance Date August 18, 2021
Published in Issue Year 2022 Volume: 71 Issue: 1

Cite

APA Kuş, C., Korkmaz, M. Ç., Kınacı, İ., Karakaya, K., et al. (2022). Modified-Lindley distribution and its applications to the real data. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 252-272. https://doi.org/10.31801/cfsuasmas.744141
AMA Kuş C, Korkmaz MÇ, Kınacı İ, Karakaya K, Akdoğan Y. Modified-Lindley distribution and its applications to the real data. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2022;71(1):252-272. doi:10.31801/cfsuasmas.744141
Chicago Kuş, Coşkun, Mustafa Çağatay Korkmaz, İsmail Kınacı, Kadir Karakaya, and Yunus Akdoğan. “Modified-Lindley Distribution and Its Applications to the Real Data”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 1 (March 2022): 252-72. https://doi.org/10.31801/cfsuasmas.744141.
EndNote Kuş C, Korkmaz MÇ, Kınacı İ, Karakaya K, Akdoğan Y (March 1, 2022) Modified-Lindley distribution and its applications to the real data. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 1 252–272.
IEEE C. Kuş, M. Ç. Korkmaz, İ. Kınacı, K. Karakaya, and Y. Akdoğan, “Modified-Lindley distribution and its applications to the real data”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 1, pp. 252–272, 2022, doi: 10.31801/cfsuasmas.744141.
ISNAD Kuş, Coşkun et al. “Modified-Lindley Distribution and Its Applications to the Real Data”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/1 (March 2022), 252-272. https://doi.org/10.31801/cfsuasmas.744141.
JAMA Kuş C, Korkmaz MÇ, Kınacı İ, Karakaya K, Akdoğan Y. Modified-Lindley distribution and its applications to the real data. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:252–272.
MLA Kuş, Coşkun et al. “Modified-Lindley Distribution and Its Applications to the Real Data”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 1, 2022, pp. 252-7, doi:10.31801/cfsuasmas.744141.
Vancouver Kuş C, Korkmaz MÇ, Kınacı İ, Karakaya K, Akdoğan Y. Modified-Lindley distribution and its applications to the real data. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(1):252-7.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.