Year 2022,
Volume: 71 Issue: 2, 349 - 376, 30.06.2022
Zeynep Kayar
,
Billur Kaymakçalan
References
- Agarwal, R., Bohner, M., Peterson, A., Inequalities on time scales: A survey, Math. Inequal. Appl. 4(4) (2001), 535–557. https://doi.org/dx.doi.org/10.7153/mia-04-48
- Agarwal, R. P., Mahmoud, R. R., Saker, S., Tun¸c, C., New generalizations of N´emeth-Mohapatra type inequalities on time scales, Acta Math. Hungar. 152(2) (2017), 383-403. https://doi.org/10.1007/s10474-017-0718-2
- Agarwal, R., O’Regan, D. and Saker, S., Dynamic Inequalities on Time Scales, Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-11002-8
- Agarwal, R., O’Regan, D., Saker, S., Hardy Type Inequalities on Time Scales, Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-44299-0
- Anderson, D. R., Time-scale integral inequalities, J. Inequal. Pure Appl. Math., 6(3) Article 66 (2005), 1-15.
- Atici, F. M., Guseinov, G. S., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141(1-2) (2002), 75-99. https://doi.org/10.1016/S0377-0427(01)00437-X
- Balinsky, A. A., Evans, W. D., Lewis, R. T., The Analysis and Geometry of Hardy’s Inequality, Springer International Publishing, Switzerland, 2015. https://doi.org/10.1007/978-3-319-22870-9
- Beesack, P. R., Hardy’s inequality and its extensions, Pacific J. Math., 11(1) (1961), 39-61. http://projecteuclid.org/euclid.pjm/1103037533
- Bennett, G., Some elementary inequalities, Quart. J. Math. Oxford Ser. (2), 38(152) (1987), 401-425. https://doi.org/10.1093/qmath/38.4.401
- Bennett, G., Some elementary inequalities II., Quart. J. Math., 39(4) (1988), 385-400. https://doi.org/10.1093/qmath/39.4.385
- Bohner, M., Mahmoud, R., Saker, S. H, Discrete, continuous, delta, nabla, and diamond-alpha Opial inequalities, Math. Inequal. Appl., 18(3) (2015), 923-940. https://doi.org/10.7153/mia-18-69
- Bohner, M., Peterson, A., Dynamic Equations on Time Scales, An Introduction With Applications, Birkhauser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0201-1
- Bohner, M., Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhauser Boston, Inc., Boston, MA, 2003. https://doi.org/10.1007/978-0-8176-8230-9
- Chu, Y.-M., Xu, Q., Zhang, X.-M., A note on Hardy’s inequality, J. Inequal. Appl., 2014(271) (2014), 1-10. https://doi.org/10.1186/1029-242X-2014-271
- Copson, E. T., Note on series of positive terms, J. London Math. Soc., 3(1) (1928), 49-51. https://doi.org/10.1112/jlms/s1-3.1.49
- Copson, E. T., Some integral inequalities, Proc. Roy. Soc. Edinburgh Sect. A, 75(2) (1976), 157-164. https://doi.org/10.1017/S0308210500017868
- El-Deeb, A. A., Elsennary, H. A., Khan, Z. A., Some reverse inequalities of Hardy type on time scales, Adv. Difference Equ., 2020(402) (2020), 1-18. https://doi.org/10.1186/s13662-020-02857-w
- El-Deeb, A. A., Elsennary, H. A., Dumitru, B., Some new Hardy-type inequalities on time scales, Adv. Difference Equ., 2020(441) (2020), 1-22. https://doi.org/10.1186/s13662-020-02883-8
- Gao, P., Zhao, H. Y., On Copson’s inequalities for 0 < p < 1, J. Inequal. Appl., 2020(72) (2020), 1-13. https://doi.org/10.1186/s13660-020-02339-3
- Guseinov, G. S., Kaymak¸calan, B., Basics of Riemann delta and nabla integration on time scales, J. Difference Equ. Appl., 8(11) (2002), 1001-1017. https://doi.org/10.1080/10236190290015272
- Gürses, M., Guseinov, G. S., Silindir, B., Integrable equations on time scales, J. Math. Phys., 46(11) 113510 (2005), 1-22. https://doi.org/10.1063/1.2116380
- Güvenilir, A. F., Kaymakçalan, B., Pelen, N. N., Constantin’s inequality for nabla and diamond-alpha derivative, J. Inequal. Appl., 2015(167) (2015), 1-17. https://doi.org/10.1186/s13660-015-0681-9
- Hardy, G. H., Littlewood, J. E., Elementary theorems concerning power series with positive coefficients and moment constants of positive functions, Journal f¨ur die reine und angewandte Mathematik, 157 (1927), 141-158. https://doi.org/10.1515/crll.1927.157.141
- Hardy, G. H., Note on a theorem of Hilbert, Math. Z., 6(3-4) (1920), 314-317. https://doi.org/10.1007/BF01199965
- Hardy, G. H., Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger Math., 54(3) (1925), 150-156.
- Hardy, G. H., Littlewood and P´olya, G., Inequalities, Cambridge University Press, London, 1934.
- Iddrisu, M. M., Okpoti, A. C., Gbolagade, A. K., Some proofs of the classical integral Hardy inequality, Korean J. Math., 22(3) 2014, 407-417. https://doi.org/10.11568/kjm.2014.22.3.407
- Kayar, Z., Kaymakçalan, B., Pelen, N. N., Bennett-Leindler type inequalities for time scale nabla calculus, Mediterr. J. Math., 18(14) (2021). https://doi.org/10.1007/s00009-020-01674-5
- Kayar, Z., Kaymakçalan, B., Hardy-Copson type inequalities for nabla time scale calculus, Turk. J. Math., 45(2) (2021), 1040-1064. https://doi.org/10.3906/mat-2011-38
- Kayar, Z., Kaymakçalan, B., Some extended nabla and delta Hardy-Copson type inequalities with applications in oscillation theory, Bull. Iran. Math. Soc., Accepted. https://doi.org/10.1007/s41980-021-00651-2.
- Kayar, Z., Kaymakçalan, B., Complements of nabla and delta Hardy-Copson type inequalities and their applications, Submitted.
- Kufner, A., Maligranda, L., Persson, L. E., The Hardy Inequality. About Its History and Some Related Results, Vydavatelsk´y Servis, Pilsen, 2007.
- Kufner, A., Persson, L. E., Samko, N., Weighted Inequalities of Hardy Type, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. https://doi.org/10.1142/10052
- Lefevre, P., A short direct proof of the discrete Hardy inequality, Arch. Math. (Basel)., 114(2) (2020), 195-198. https://doi.org/10.1007/s00013-019-01395-6
- Leindler, L., Some inequalities pertaining to Bennett’s results, Acta Sci. Math. (Szeged)., 58(1-4) (1993), 261-279.
- Leindler, L., Further sharpening of inequalities of Hardy and Littlewood, Acta Sci. Math., 54(3–4) (1990), 285–289.
- Liao, Z.-W., Discrete Hardy-type inequalities, Adv. Nonlinear Stud., 15(4) (2015), 805-834. https://doi.org/10.1515/ans-2015-0404
- Masmoudi, N., About the Hardy Inequality, in: An Invitation to Mathematics. From Competitions to Research, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-19533-4_11
- Nikolidakis, E. N., A sharp integral Hardy type inequality and applications to Muckenhoupt weights on R, Ann. Acad. Sci. Fenn. Math., 39(2) (2014), 887-896. https://doi.org/10.5186/aasfm.2014.3947
- Özkan, U. M., Sarikaya, M. Z., Yildirim, H., Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 21(10) (2008), 993-1000. https://doi.org/10.1016/j.aml.2007.06.008
- Pachpatte, B. G., On Some Generalizations of Hardy’s Integral Inequality, J. Math. Anal. Appl., 234(1) (1999), 15-30. https://doi.org/10.1006/jmaa.1999.6294
- Pecaric, J., Hanjs, Z., On some generalizations of inequalities given by B. G. Pachpatte, An. Şttiint¸. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 45(1) (1999), 103-114.
- Pelen, N. N., Hardy-Sobolev-Mazya inequality for nabla time scale calculus, Eskisehir Technical University Journal of Science and Technology B - Theoretical Sciences, 7(2) (2019), 133-145. https://doi.org/10.20290/estubtdb.609525
- Rehak, P., Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005(5) (2005), 495–507. https://doi.org/10.1155/JIA.2005.495
- Renaud, P., A reversed Hardy inequality, Bull. Austral. Math. Soc., 34 (1986), 225-232. https://doi.org/10.1017/S0004972700010091
- Saker, S. H., Dynamic inequalities on time scales: A survey, J. Fractional Calc. & Appl., 3(S)(2) (2012), 1-36.
- Saker, S. H., Hardy–Leindler Type Inequalities on Time Scales, Appl. Math. Inf. Sci., 8(6) (2014), 2975-2981. https://doi.org/10.12785/amis/080635
- Saker, S. H., Mahmoud, R. R., A connection between weighted Hardy’s inequality and half-linear dynamic equations, Adv. Difference Equ., 2014(129) (2019), 1-15. https://doi.org/10.1186/s13662-019-2072-x
- Saker, S. H., Mahmoud, R. R., Peterson, A., Some Bennett-Copson type inequalities on time scales, J. Math. Inequal., 10(2) (2016), 471-489. https://doi.org/10.7153/jmi-10-37
- Saker, S. H., Mahmoud, R. R., Osman, M. M., Agarwal, R. P., Some new generalized forms of Hardy’s type inequality on time scales, Math. Inequal. Appl., 20(2) (2017), 459-481. https://doi.org/10.7153/mia-20-31
- Saker, S. H., O’Regan, D., Agarwal, R. P., Dynamic inequalities of Hardy and Copson type on time scales, Analysis, 34(4) (2014), 391-402. https://doi.org/10.1515/anly-2012-1234
- Saker, S. H., O’Regan, D., Agarwal, R. P., Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales, Math. Nachr., 287(5-6) (2014), 686-698. https://doi.org/10.1002/mana.201300010
- Saker, S. H., Osman, M. M., O’Regan, D., Agarwal, R. P., Inequalities of Hardy type and generalizations on time scales, Analysis, 38(1) (2018), 47–62. https://doi.org/10.1515/anly-2017-0006
- Saker, S. H., Mahmoud, R. R., Peterson, A., A unified approach to Copson and Beesack type inequalities on time scales, Math. Inequal. Appl., 21(4) (2018), 985-1002. https://doi.org/10.7153/mia-2018-21-67
- Saker, S. H., O’Regan, D., Agarwal, R. P., Converses of Copson’s inequalities on time scales, Math. Inequal. Appl., 18(1) (2015), 241-254. https://doi.org/10.7153/mia-18-18
The complementary nabla Bennett-Leindler type inequalities
Year 2022,
Volume: 71 Issue: 2, 349 - 376, 30.06.2022
Zeynep Kayar
,
Billur Kaymakçalan
Abstract
We aim to find the complements of the Bennett-Leindler type inequalities in nabla time scale calculus by changing the exponent from $0<\zeta< 1$ to $\zeta>1.$ Different from the literature, the directions of the new inequalities, where $\zeta>1,$ are the same as that of the previous nabla Bennett-Leindler type inequalities obtained for $0<\zeta< 1$. By these settings, we not only complement existing nabla Bennett-Leindler type inequalities but also generalize them by involving more exponents. The dual results for the delta approach and the special cases for the discrete and continuous ones are obtained as well. Some of our results are novel even in the special cases.
References
- Agarwal, R., Bohner, M., Peterson, A., Inequalities on time scales: A survey, Math. Inequal. Appl. 4(4) (2001), 535–557. https://doi.org/dx.doi.org/10.7153/mia-04-48
- Agarwal, R. P., Mahmoud, R. R., Saker, S., Tun¸c, C., New generalizations of N´emeth-Mohapatra type inequalities on time scales, Acta Math. Hungar. 152(2) (2017), 383-403. https://doi.org/10.1007/s10474-017-0718-2
- Agarwal, R., O’Regan, D. and Saker, S., Dynamic Inequalities on Time Scales, Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-11002-8
- Agarwal, R., O’Regan, D., Saker, S., Hardy Type Inequalities on Time Scales, Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-44299-0
- Anderson, D. R., Time-scale integral inequalities, J. Inequal. Pure Appl. Math., 6(3) Article 66 (2005), 1-15.
- Atici, F. M., Guseinov, G. S., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141(1-2) (2002), 75-99. https://doi.org/10.1016/S0377-0427(01)00437-X
- Balinsky, A. A., Evans, W. D., Lewis, R. T., The Analysis and Geometry of Hardy’s Inequality, Springer International Publishing, Switzerland, 2015. https://doi.org/10.1007/978-3-319-22870-9
- Beesack, P. R., Hardy’s inequality and its extensions, Pacific J. Math., 11(1) (1961), 39-61. http://projecteuclid.org/euclid.pjm/1103037533
- Bennett, G., Some elementary inequalities, Quart. J. Math. Oxford Ser. (2), 38(152) (1987), 401-425. https://doi.org/10.1093/qmath/38.4.401
- Bennett, G., Some elementary inequalities II., Quart. J. Math., 39(4) (1988), 385-400. https://doi.org/10.1093/qmath/39.4.385
- Bohner, M., Mahmoud, R., Saker, S. H, Discrete, continuous, delta, nabla, and diamond-alpha Opial inequalities, Math. Inequal. Appl., 18(3) (2015), 923-940. https://doi.org/10.7153/mia-18-69
- Bohner, M., Peterson, A., Dynamic Equations on Time Scales, An Introduction With Applications, Birkhauser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0201-1
- Bohner, M., Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhauser Boston, Inc., Boston, MA, 2003. https://doi.org/10.1007/978-0-8176-8230-9
- Chu, Y.-M., Xu, Q., Zhang, X.-M., A note on Hardy’s inequality, J. Inequal. Appl., 2014(271) (2014), 1-10. https://doi.org/10.1186/1029-242X-2014-271
- Copson, E. T., Note on series of positive terms, J. London Math. Soc., 3(1) (1928), 49-51. https://doi.org/10.1112/jlms/s1-3.1.49
- Copson, E. T., Some integral inequalities, Proc. Roy. Soc. Edinburgh Sect. A, 75(2) (1976), 157-164. https://doi.org/10.1017/S0308210500017868
- El-Deeb, A. A., Elsennary, H. A., Khan, Z. A., Some reverse inequalities of Hardy type on time scales, Adv. Difference Equ., 2020(402) (2020), 1-18. https://doi.org/10.1186/s13662-020-02857-w
- El-Deeb, A. A., Elsennary, H. A., Dumitru, B., Some new Hardy-type inequalities on time scales, Adv. Difference Equ., 2020(441) (2020), 1-22. https://doi.org/10.1186/s13662-020-02883-8
- Gao, P., Zhao, H. Y., On Copson’s inequalities for 0 < p < 1, J. Inequal. Appl., 2020(72) (2020), 1-13. https://doi.org/10.1186/s13660-020-02339-3
- Guseinov, G. S., Kaymak¸calan, B., Basics of Riemann delta and nabla integration on time scales, J. Difference Equ. Appl., 8(11) (2002), 1001-1017. https://doi.org/10.1080/10236190290015272
- Gürses, M., Guseinov, G. S., Silindir, B., Integrable equations on time scales, J. Math. Phys., 46(11) 113510 (2005), 1-22. https://doi.org/10.1063/1.2116380
- Güvenilir, A. F., Kaymakçalan, B., Pelen, N. N., Constantin’s inequality for nabla and diamond-alpha derivative, J. Inequal. Appl., 2015(167) (2015), 1-17. https://doi.org/10.1186/s13660-015-0681-9
- Hardy, G. H., Littlewood, J. E., Elementary theorems concerning power series with positive coefficients and moment constants of positive functions, Journal f¨ur die reine und angewandte Mathematik, 157 (1927), 141-158. https://doi.org/10.1515/crll.1927.157.141
- Hardy, G. H., Note on a theorem of Hilbert, Math. Z., 6(3-4) (1920), 314-317. https://doi.org/10.1007/BF01199965
- Hardy, G. H., Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger Math., 54(3) (1925), 150-156.
- Hardy, G. H., Littlewood and P´olya, G., Inequalities, Cambridge University Press, London, 1934.
- Iddrisu, M. M., Okpoti, A. C., Gbolagade, A. K., Some proofs of the classical integral Hardy inequality, Korean J. Math., 22(3) 2014, 407-417. https://doi.org/10.11568/kjm.2014.22.3.407
- Kayar, Z., Kaymakçalan, B., Pelen, N. N., Bennett-Leindler type inequalities for time scale nabla calculus, Mediterr. J. Math., 18(14) (2021). https://doi.org/10.1007/s00009-020-01674-5
- Kayar, Z., Kaymakçalan, B., Hardy-Copson type inequalities for nabla time scale calculus, Turk. J. Math., 45(2) (2021), 1040-1064. https://doi.org/10.3906/mat-2011-38
- Kayar, Z., Kaymakçalan, B., Some extended nabla and delta Hardy-Copson type inequalities with applications in oscillation theory, Bull. Iran. Math. Soc., Accepted. https://doi.org/10.1007/s41980-021-00651-2.
- Kayar, Z., Kaymakçalan, B., Complements of nabla and delta Hardy-Copson type inequalities and their applications, Submitted.
- Kufner, A., Maligranda, L., Persson, L. E., The Hardy Inequality. About Its History and Some Related Results, Vydavatelsk´y Servis, Pilsen, 2007.
- Kufner, A., Persson, L. E., Samko, N., Weighted Inequalities of Hardy Type, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. https://doi.org/10.1142/10052
- Lefevre, P., A short direct proof of the discrete Hardy inequality, Arch. Math. (Basel)., 114(2) (2020), 195-198. https://doi.org/10.1007/s00013-019-01395-6
- Leindler, L., Some inequalities pertaining to Bennett’s results, Acta Sci. Math. (Szeged)., 58(1-4) (1993), 261-279.
- Leindler, L., Further sharpening of inequalities of Hardy and Littlewood, Acta Sci. Math., 54(3–4) (1990), 285–289.
- Liao, Z.-W., Discrete Hardy-type inequalities, Adv. Nonlinear Stud., 15(4) (2015), 805-834. https://doi.org/10.1515/ans-2015-0404
- Masmoudi, N., About the Hardy Inequality, in: An Invitation to Mathematics. From Competitions to Research, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-19533-4_11
- Nikolidakis, E. N., A sharp integral Hardy type inequality and applications to Muckenhoupt weights on R, Ann. Acad. Sci. Fenn. Math., 39(2) (2014), 887-896. https://doi.org/10.5186/aasfm.2014.3947
- Özkan, U. M., Sarikaya, M. Z., Yildirim, H., Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 21(10) (2008), 993-1000. https://doi.org/10.1016/j.aml.2007.06.008
- Pachpatte, B. G., On Some Generalizations of Hardy’s Integral Inequality, J. Math. Anal. Appl., 234(1) (1999), 15-30. https://doi.org/10.1006/jmaa.1999.6294
- Pecaric, J., Hanjs, Z., On some generalizations of inequalities given by B. G. Pachpatte, An. Şttiint¸. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 45(1) (1999), 103-114.
- Pelen, N. N., Hardy-Sobolev-Mazya inequality for nabla time scale calculus, Eskisehir Technical University Journal of Science and Technology B - Theoretical Sciences, 7(2) (2019), 133-145. https://doi.org/10.20290/estubtdb.609525
- Rehak, P., Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005(5) (2005), 495–507. https://doi.org/10.1155/JIA.2005.495
- Renaud, P., A reversed Hardy inequality, Bull. Austral. Math. Soc., 34 (1986), 225-232. https://doi.org/10.1017/S0004972700010091
- Saker, S. H., Dynamic inequalities on time scales: A survey, J. Fractional Calc. & Appl., 3(S)(2) (2012), 1-36.
- Saker, S. H., Hardy–Leindler Type Inequalities on Time Scales, Appl. Math. Inf. Sci., 8(6) (2014), 2975-2981. https://doi.org/10.12785/amis/080635
- Saker, S. H., Mahmoud, R. R., A connection between weighted Hardy’s inequality and half-linear dynamic equations, Adv. Difference Equ., 2014(129) (2019), 1-15. https://doi.org/10.1186/s13662-019-2072-x
- Saker, S. H., Mahmoud, R. R., Peterson, A., Some Bennett-Copson type inequalities on time scales, J. Math. Inequal., 10(2) (2016), 471-489. https://doi.org/10.7153/jmi-10-37
- Saker, S. H., Mahmoud, R. R., Osman, M. M., Agarwal, R. P., Some new generalized forms of Hardy’s type inequality on time scales, Math. Inequal. Appl., 20(2) (2017), 459-481. https://doi.org/10.7153/mia-20-31
- Saker, S. H., O’Regan, D., Agarwal, R. P., Dynamic inequalities of Hardy and Copson type on time scales, Analysis, 34(4) (2014), 391-402. https://doi.org/10.1515/anly-2012-1234
- Saker, S. H., O’Regan, D., Agarwal, R. P., Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales, Math. Nachr., 287(5-6) (2014), 686-698. https://doi.org/10.1002/mana.201300010
- Saker, S. H., Osman, M. M., O’Regan, D., Agarwal, R. P., Inequalities of Hardy type and generalizations on time scales, Analysis, 38(1) (2018), 47–62. https://doi.org/10.1515/anly-2017-0006
- Saker, S. H., Mahmoud, R. R., Peterson, A., A unified approach to Copson and Beesack type inequalities on time scales, Math. Inequal. Appl., 21(4) (2018), 985-1002. https://doi.org/10.7153/mia-2018-21-67
- Saker, S. H., O’Regan, D., Agarwal, R. P., Converses of Copson’s inequalities on time scales, Math. Inequal. Appl., 18(1) (2015), 241-254. https://doi.org/10.7153/mia-18-18