Research Article
BibTex RIS Cite
Year 2022, Volume: 71 Issue: 3, 710 - 719, 30.09.2022
https://doi.org/10.31801/cfsuasmas.1030942

Abstract

References

  • Adamowicz, T., Harjulehto, P., Hastö, P., Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces, Math. Scand., 116(1) (2015), 5–22. https://doi.org/10.7146/math.scand.a-20448
  • Cruz-Uribe, D., Fiorenza, A., Neugebauer, C., The maximal function on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238.
  • Cruz-Uribe, D., Fiorenza, A., Martell, J., Perez, C., The boundedness of classical operators on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264.
  • Diening, L., Maximal function on Orlicz-Musielak spaces and generalized Lebesgue space, Bull. Sci. Math., 129(8) (2005), 657–700. https://doi.org/10.1016/j.bulsci.2003.10.003
  • Diening, L., Maximal function on generalized Lebesgue spaces $L^{p(x)}$, Mathematical Ineq. & App., 7(2) (2004), 245–253. dx.doi.org/10.7153/mia-07-27
  • Ekincioglu, I., Guliyev, V. S., Kaya, E., Bn−maximal operator and $B_n$−singular integral operators on variable exponent Lebesgue spaces, Mathematica Slovaca, 70(4) (2020), 893– 902. https://doi.org/10.1515/ms-2017-0401
  • Ekincioglu, I., Shishkina, E. L., Kaya, E., On the boundedness of the generalized translation operator on variable exponent Lebesgue spaces, Acta Applicandae Mathematicae, 173 (2021), 1–14. https://doi.org/10.1007/s10440-021-00411-8
  • Guliev, V. S., On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl., 6(2) (2003), 317–330. dx.doi.org/10.7153/mia-06-30
  • Gürbüz, F., Degisken üstlü Lebesgue uzaylarında kaba ¸cekirdekli kesirli maksimal ve integral operatorlerinin genellestirilmis komutatorleri icin bazı tahminler icin Muhendislik, Matematik ve Doga Bilimlerinde Yenilikci Yaklaşımlar, Ekin Yayınevi, T¨urkiye, 2019, 1–11.
  • Gürbüz, F., Ding, S., Han, H., Long, P., Characterizations of Rough Fractional-Type Integral Operators on Variable Exponent Vanishing Morrey-Type Spaces, in Topics in Contemporary Mathematical Analysis and Applications, CRC Press, 2020. 10.1201/9781003081197-4
  • Gürbüz, F., Ding, S., Han, H., Long, P., Norm inequalities on variable exponent vanishing Morrey type spaces for the rough singular type integral operators, Int. J. Nonlinear Sci. Numer. Simul., 22(6) (2021), 721–739. https://doi.org/10.1515/ijnsns-2019-0180
  • Kaya, E., A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces, Open Mathematics, 19(1) (2021), 306–315. https://doi.org/10.1515/math-2021-0041
  • Klyuchantsev, M. I., On singular integrals generated by the generalized shift operator I, Sibirsk. Math. Zh., 11(4) (1970), 810–821. http://mi.mathnet.ru/eng/smj/v11/i4/p810
  • Levitan, B. M., Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk, 6:2(42) (1951), 102–143. http://mi.mathnet.ru/eng/umn/v6/i2/p102
  • Sarfraz, N., Jarad, F., Estimates for a rough fractional integral operator and its commutators on p−adic central Morrey spaces, Fractal Fract., 6(2) (2022), 117. https://doi.org/10.3390/fractalfract6020117
  • Sarfraz, N., Aslam, M., Jarad, F., Boundedness for commutators of rough p−adic Hardy operator on p−adic central Morrey spaces, J. Funct. Spaces, 2021 (2021), 1–5. https://doi.org/10.1155/2021/4886197

A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces

Year 2022, Volume: 71 Issue: 3, 710 - 719, 30.09.2022
https://doi.org/10.31801/cfsuasmas.1030942

Abstract

By using the Lp()Lp(⋅)−boundedness of a maximal operator defined on homogeneous space, it has been shown that the BB−maximal operator is bounded. In the present paper, we aim to bring a different approach to the boundedness of the BB−maximal operator generated by generalized translation operator under a continuity assumption on p()p(⋅). It is noteworthy to mention that our assumption is weaker than uniform Hölder continuity.

References

  • Adamowicz, T., Harjulehto, P., Hastö, P., Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces, Math. Scand., 116(1) (2015), 5–22. https://doi.org/10.7146/math.scand.a-20448
  • Cruz-Uribe, D., Fiorenza, A., Neugebauer, C., The maximal function on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238.
  • Cruz-Uribe, D., Fiorenza, A., Martell, J., Perez, C., The boundedness of classical operators on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264.
  • Diening, L., Maximal function on Orlicz-Musielak spaces and generalized Lebesgue space, Bull. Sci. Math., 129(8) (2005), 657–700. https://doi.org/10.1016/j.bulsci.2003.10.003
  • Diening, L., Maximal function on generalized Lebesgue spaces $L^{p(x)}$, Mathematical Ineq. & App., 7(2) (2004), 245–253. dx.doi.org/10.7153/mia-07-27
  • Ekincioglu, I., Guliyev, V. S., Kaya, E., Bn−maximal operator and $B_n$−singular integral operators on variable exponent Lebesgue spaces, Mathematica Slovaca, 70(4) (2020), 893– 902. https://doi.org/10.1515/ms-2017-0401
  • Ekincioglu, I., Shishkina, E. L., Kaya, E., On the boundedness of the generalized translation operator on variable exponent Lebesgue spaces, Acta Applicandae Mathematicae, 173 (2021), 1–14. https://doi.org/10.1007/s10440-021-00411-8
  • Guliev, V. S., On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl., 6(2) (2003), 317–330. dx.doi.org/10.7153/mia-06-30
  • Gürbüz, F., Degisken üstlü Lebesgue uzaylarında kaba ¸cekirdekli kesirli maksimal ve integral operatorlerinin genellestirilmis komutatorleri icin bazı tahminler icin Muhendislik, Matematik ve Doga Bilimlerinde Yenilikci Yaklaşımlar, Ekin Yayınevi, T¨urkiye, 2019, 1–11.
  • Gürbüz, F., Ding, S., Han, H., Long, P., Characterizations of Rough Fractional-Type Integral Operators on Variable Exponent Vanishing Morrey-Type Spaces, in Topics in Contemporary Mathematical Analysis and Applications, CRC Press, 2020. 10.1201/9781003081197-4
  • Gürbüz, F., Ding, S., Han, H., Long, P., Norm inequalities on variable exponent vanishing Morrey type spaces for the rough singular type integral operators, Int. J. Nonlinear Sci. Numer. Simul., 22(6) (2021), 721–739. https://doi.org/10.1515/ijnsns-2019-0180
  • Kaya, E., A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces, Open Mathematics, 19(1) (2021), 306–315. https://doi.org/10.1515/math-2021-0041
  • Klyuchantsev, M. I., On singular integrals generated by the generalized shift operator I, Sibirsk. Math. Zh., 11(4) (1970), 810–821. http://mi.mathnet.ru/eng/smj/v11/i4/p810
  • Levitan, B. M., Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk, 6:2(42) (1951), 102–143. http://mi.mathnet.ru/eng/umn/v6/i2/p102
  • Sarfraz, N., Jarad, F., Estimates for a rough fractional integral operator and its commutators on p−adic central Morrey spaces, Fractal Fract., 6(2) (2022), 117. https://doi.org/10.3390/fractalfract6020117
  • Sarfraz, N., Aslam, M., Jarad, F., Boundedness for commutators of rough p−adic Hardy operator on p−adic central Morrey spaces, J. Funct. Spaces, 2021 (2021), 1–5. https://doi.org/10.1155/2021/4886197
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Esra Kaya 0000-0002-6971-0452

Publication Date September 30, 2022
Submission Date December 1, 2021
Acceptance Date March 12, 2022
Published in Issue Year 2022 Volume: 71 Issue: 3

Cite

APA Kaya, E. (2022). A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(3), 710-719. https://doi.org/10.31801/cfsuasmas.1030942
AMA Kaya E. A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2022;71(3):710-719. doi:10.31801/cfsuasmas.1030942
Chicago Kaya, Esra. “A Different Approach to Boundedness of the B-Maximal Operators on the Variable Lebesgue Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 3 (September 2022): 710-19. https://doi.org/10.31801/cfsuasmas.1030942.
EndNote Kaya E (September 1, 2022) A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 3 710–719.
IEEE E. Kaya, “A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 3, pp. 710–719, 2022, doi: 10.31801/cfsuasmas.1030942.
ISNAD Kaya, Esra. “A Different Approach to Boundedness of the B-Maximal Operators on the Variable Lebesgue Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/3 (September 2022), 710-719. https://doi.org/10.31801/cfsuasmas.1030942.
JAMA Kaya E. A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:710–719.
MLA Kaya, Esra. “A Different Approach to Boundedness of the B-Maximal Operators on the Variable Lebesgue Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 3, 2022, pp. 710-9, doi:10.31801/cfsuasmas.1030942.
Vancouver Kaya E. A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(3):710-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.