Research Article
BibTex RIS Cite

Multivalent harmonic functions involving multiplier transformation

Year 2022, Volume: 71 Issue: 3, 731 - 751, 30.09.2022
https://doi.org/10.31801/cfsuasmas.962040

Abstract

In the present investigation we study a subclass of multivalent harmonic functions involving multiplier transformation. An equivalent convolution class condition and a sufficient coefficient condition for this class is acquired. We also show that this coefficient condition is necessary for functions belonging to its subclass. As an application of coefficient condition, a necessary and sufficient hypergeometric inequality is also given. Further, results on bounds, inclusion relation, extreme points, a convolution property and a result based on the integral operator are obtained.

Supporting Institution

None

Project Number

NA

References

  • Ahuja, O. P., Jahangiri, J. M., Multivalent harmonic starlike functions, Ann. Univ. Mariac Curie-Sklodowska Section A, 55(1) (2001), 1–13.
  • Ahuja, O. P., Jahangiri, J. M., Errata to Multivalent harmonic starlike function, Ann. Univ. Mariac Curie-Sklodowska Section A 56(1) (2002), 105.
  • Ahuja, O. P., Aghalary, R., Joshi, S. B., Harmonic univalent functions associated with k-uniformly starlike functions, Math. Sci. Res. J., 9(1) (2005), 9–17.
  • Ahuja, O. P., Güney, H. Ö., Sakar, F. M., Certain classes of harmonic multivalent functions based on Hadamard product, J. Inequal. Appl., 2010 (2009), Art. ID 759251, 12pp. https://doi.org/10.1155/2009/759251
  • Güney, H. Ö., Ahuja, O. P., Inequalities involving multipliers for multivalent harmonic functions, J. Inequal. Pure Appl. Math., 7(5) Art. 190 (2006), 1–9.
  • Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A Math., 9 (1984), 3–25.
  • Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM, J. Math. Anal., 15 (1984), 737–745.
  • Duren, P., Hengartner, W., Laugesen, R. S., The argument principle for harmonic functions, Amer. Math. Monthly, 103 (1996), 411–415.
  • Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1–13. https://doi.org/10.1016/S0096-3003(98)10042-5
  • Ebadian, A., Tehranchi, A., On certain classes of harmonic p- valent functions by applying the Ruscheweyh derivatives, Filomat, 23(1) (2009), 91–101.
  • Murugusundaramoorthy, G., Raina, R. K., On a subclass of harmonic functions associated with Wright’s generalized hypergeometric functions, Hacettepe J. Math. Stat., 38(2) (2009), 129–136.
  • Murugusundaramoorthy, G., Vijaya, K., Starlike harmonic functions in parabolic region associated with a convolution structure, Acta Univ. Sapientiae Math., 2(2) (2010), 168–183.
  • Murugusundaramoorthy, G., Vijaya, K., Raina, R. K., A subclass of harmonic univalent functions with varying arguments defined by Dziok-Srivastava operator, Archivun Mathematicum (BRNO) Tomus, 45 (2009), 37-46.
  • Murugusundaramoorthy, G., Harmonic starlike functions of complex order involving hypergeometric functions, Math. Vesnik, 64(4) (2012), 316–325.
  • Murugusundaramoorthy, G., Uma, K., Harmonic univalent functions associated with generalized hypergeometric functions, Bull. Math. Anal. Appl., 2(2) (2010), 69–76.
  • Omar, R., Halim, S. A., Multivalent Harmonic Functions defined by Dziok-Srivastava operator, Bull. Malays. Math. Sci. Soc., 35(3)(2) (2012), 601–610.
  • Owa, S., On the distortion theorems - I, Kyungpook. Math. J., 18 (1978) 53–59.
  • Porwal, S., Some properties of a subclass of harmonic univalent functions defined by the multiplier transformations, Indian J. Pure Appl. Math., 46(3) (2015), 309–335. https://doi.org/10.1007/s13226-015-0132-9
  • Porwal, S., On a new subclass of harmonic univalent functions defined by multiplier transformation, Mathematica Moravica, 19(2) (2015), 75–87. http://dx.doi.org/10.5937/MatMor1502075P
  • Srivastava, H. M., Li, Shu-Hai, Tang, H., Certain classes of k-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator, Bull. Math. Anal. Appl., 1(3) (2009), 49–63.
  • Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. https://doi.org/10.1090/S0002-9939-1975-0367176-1
  • Atshan, W. G., Kulkarni, S. R., Raina, R. K., A class of multivalent harmonic functions involving a generalized Ruscheweyh type operator, Math. Vesnik, 60 (2008), 207–213.
Year 2022, Volume: 71 Issue: 3, 731 - 751, 30.09.2022
https://doi.org/10.31801/cfsuasmas.962040

Abstract

Project Number

NA

References

  • Ahuja, O. P., Jahangiri, J. M., Multivalent harmonic starlike functions, Ann. Univ. Mariac Curie-Sklodowska Section A, 55(1) (2001), 1–13.
  • Ahuja, O. P., Jahangiri, J. M., Errata to Multivalent harmonic starlike function, Ann. Univ. Mariac Curie-Sklodowska Section A 56(1) (2002), 105.
  • Ahuja, O. P., Aghalary, R., Joshi, S. B., Harmonic univalent functions associated with k-uniformly starlike functions, Math. Sci. Res. J., 9(1) (2005), 9–17.
  • Ahuja, O. P., Güney, H. Ö., Sakar, F. M., Certain classes of harmonic multivalent functions based on Hadamard product, J. Inequal. Appl., 2010 (2009), Art. ID 759251, 12pp. https://doi.org/10.1155/2009/759251
  • Güney, H. Ö., Ahuja, O. P., Inequalities involving multipliers for multivalent harmonic functions, J. Inequal. Pure Appl. Math., 7(5) Art. 190 (2006), 1–9.
  • Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A Math., 9 (1984), 3–25.
  • Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM, J. Math. Anal., 15 (1984), 737–745.
  • Duren, P., Hengartner, W., Laugesen, R. S., The argument principle for harmonic functions, Amer. Math. Monthly, 103 (1996), 411–415.
  • Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1–13. https://doi.org/10.1016/S0096-3003(98)10042-5
  • Ebadian, A., Tehranchi, A., On certain classes of harmonic p- valent functions by applying the Ruscheweyh derivatives, Filomat, 23(1) (2009), 91–101.
  • Murugusundaramoorthy, G., Raina, R. K., On a subclass of harmonic functions associated with Wright’s generalized hypergeometric functions, Hacettepe J. Math. Stat., 38(2) (2009), 129–136.
  • Murugusundaramoorthy, G., Vijaya, K., Starlike harmonic functions in parabolic region associated with a convolution structure, Acta Univ. Sapientiae Math., 2(2) (2010), 168–183.
  • Murugusundaramoorthy, G., Vijaya, K., Raina, R. K., A subclass of harmonic univalent functions with varying arguments defined by Dziok-Srivastava operator, Archivun Mathematicum (BRNO) Tomus, 45 (2009), 37-46.
  • Murugusundaramoorthy, G., Harmonic starlike functions of complex order involving hypergeometric functions, Math. Vesnik, 64(4) (2012), 316–325.
  • Murugusundaramoorthy, G., Uma, K., Harmonic univalent functions associated with generalized hypergeometric functions, Bull. Math. Anal. Appl., 2(2) (2010), 69–76.
  • Omar, R., Halim, S. A., Multivalent Harmonic Functions defined by Dziok-Srivastava operator, Bull. Malays. Math. Sci. Soc., 35(3)(2) (2012), 601–610.
  • Owa, S., On the distortion theorems - I, Kyungpook. Math. J., 18 (1978) 53–59.
  • Porwal, S., Some properties of a subclass of harmonic univalent functions defined by the multiplier transformations, Indian J. Pure Appl. Math., 46(3) (2015), 309–335. https://doi.org/10.1007/s13226-015-0132-9
  • Porwal, S., On a new subclass of harmonic univalent functions defined by multiplier transformation, Mathematica Moravica, 19(2) (2015), 75–87. http://dx.doi.org/10.5937/MatMor1502075P
  • Srivastava, H. M., Li, Shu-Hai, Tang, H., Certain classes of k-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator, Bull. Math. Anal. Appl., 1(3) (2009), 49–63.
  • Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. https://doi.org/10.1090/S0002-9939-1975-0367176-1
  • Atshan, W. G., Kulkarni, S. R., Raina, R. K., A class of multivalent harmonic functions involving a generalized Ruscheweyh type operator, Math. Vesnik, 60 (2008), 207–213.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Vimlesh Gupta 0000-0001-7050-494X

Saurabh Porwal 0000-0003-0847-3550

Omendra Mishra 0000-0001-9614-8656

Project Number NA
Publication Date September 30, 2022
Submission Date July 4, 2021
Acceptance Date February 22, 2022
Published in Issue Year 2022 Volume: 71 Issue: 3

Cite

APA Gupta, V., Porwal, S., & Mishra, O. (2022). Multivalent harmonic functions involving multiplier transformation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(3), 731-751. https://doi.org/10.31801/cfsuasmas.962040
AMA Gupta V, Porwal S, Mishra O. Multivalent harmonic functions involving multiplier transformation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2022;71(3):731-751. doi:10.31801/cfsuasmas.962040
Chicago Gupta, Vimlesh, Saurabh Porwal, and Omendra Mishra. “Multivalent Harmonic Functions Involving Multiplier Transformation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 3 (September 2022): 731-51. https://doi.org/10.31801/cfsuasmas.962040.
EndNote Gupta V, Porwal S, Mishra O (September 1, 2022) Multivalent harmonic functions involving multiplier transformation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 3 731–751.
IEEE V. Gupta, S. Porwal, and O. Mishra, “Multivalent harmonic functions involving multiplier transformation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 3, pp. 731–751, 2022, doi: 10.31801/cfsuasmas.962040.
ISNAD Gupta, Vimlesh et al. “Multivalent Harmonic Functions Involving Multiplier Transformation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/3 (September 2022), 731-751. https://doi.org/10.31801/cfsuasmas.962040.
JAMA Gupta V, Porwal S, Mishra O. Multivalent harmonic functions involving multiplier transformation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:731–751.
MLA Gupta, Vimlesh et al. “Multivalent Harmonic Functions Involving Multiplier Transformation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 3, 2022, pp. 731-5, doi:10.31801/cfsuasmas.962040.
Vancouver Gupta V, Porwal S, Mishra O. Multivalent harmonic functions involving multiplier transformation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(3):731-5.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.