Research Article
BibTex RIS Cite

New summability methods via $\widetilde{\phi}$ functions

Year 2023, Volume: 72 Issue: 2, 449 - 461, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1114983

Abstract

In 1971, the definition of Orlicz $\widetilde{\phi}$ functions was introduced by Lindenstrauss and Tzafriri and moreover in 2006, the notion of double lacunary sequences was presented by Savaş and Patterson. The primary focus of this article is to introduce the double statistically $\widetilde{\phi }$-convergence and double lacunary statistically $\widetilde{\phi }$-convergence which are generalizations of the double statistically convergence [19] and double lacunary statistically convergence [24]. Additionally, some essential inclusion theorems are examined.

References

  • Alotaibi, A., Mursaleen, M., Raj, K., Double sequence spaces by means of Orlicz functions, Abstr. Appl. Anal., Article ID 260326 (2014). https://doi.org/ 10.1155/2014/260326
  • Çolak, R., Altin, Y., Statistical convergence of double sequences of order $\alpha$, J. Funct. Spaces Appl., Article ID 682823 (2013). https://doi.org/10.1155/2013/682823
  • Demirci, I. A., Gürdal, M., Lacunary statistical convergence for sets of triple sequences via Orlicz function, Theory. App. Math. & Computer Sci., 11(1) (2021), 1-13.
  • Demirci, I. A., Gürdal, M., On lacunary statistically $\phi$−convergence for triple sequences of sets via ideals, J. Appl. Math. and Inf., 40(3-4) (2022), 433-444. https://doi.org/10.14317/jami.2022.433
  • Et, M., Nuray, F., m-statistical convergence, Indian J. Pure Appl. Math,, 32(6) (2001), 961-969.
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
  • Fridy, J.A., On statistical convergence, Analysis, 5 (1985), 301-313.
  • Huban, M. B., Gürdal, M., Wijsman lacunary invariant statistical convergence for triple sequences via Orlicz function, J. Class. Anal., 17(2) (2021), 119-128. https://doi.org/10.7153/jca-2021-17-08
  • Huban, M. B., Gürdal, M., Deferred invariant statistical convergent triple sequences via Orlicz function, Bull. Math. Sci. Appl., 13(3) (2021), 25-38.
  • Huban, M. B., Gürdal, M., On asymptotically lacunary statistical equivalent triple sequences via ideals and Orlicz function, Honam Math. J., 43(2) (2021), 343-357.
  • Huban, M. B., Gürdal, M., On asymptotically invariant $\lambda$−statistical $\phi$−equivalent triple sequences, Electron. J. Math. Anal. Appl., 10(1) (2022), 175-183.
  • Kişi, Ö., Güler, E., Deferred statistical convergence of double sequences in intuitionistic fuzzy normed linear spaces, Turk. J. Math. and Comp. Sci., 11 (2019), 95-104.
  • Khan, V., Khan, N., Esi, A., Tabassum, S., I-pre-Cauchy double sequences and Orlicz functions, Engineering, 5(5A) (2013), 52-356. https:// 10.4236/eng.2013.55A008
  • Krasnoselski, M. A., Rutitsky, Y. B., Convex Functions and Orlicz Spaces, Groningen, Netherlands, 1961.
  • Lindenstrauss, J., Tzafriri, L., On Orlicz sequence spaces, Isr. J. Math., 10(3) (1971), 379-390.
  • Miller, H. I., A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1995), 1811-1819.
  • Mohiuddine, S. A., Raj, K., Alotaibi, A., Generalized spaces of double sequences for Orlicz functions and bounded-regular matrices over n-Normed spaces, J. Inequal. Appl., 332 (2014). https://doi.org/10.1186/1029-242X-2014-332
  • Mursaleen, M., Edely, O. H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223-231.
  • Mursaleen, M., Cakan, C., Mohiuddine, S. A., Savas, E., Generalized statistical convergence and statistical core of double sequences, Acta Math. Sin. Engl. Ser., 26(11) (2010), 2131-2144.
  • Pringsheim, A., Zur theorie der zweifach unendlichen zahlen folgen, Math. Ann., 53 (1900), 289-321.
  • Savas, E., Patterson, R. F., Some $\sigma$−double sequence spaces defined by Orlicz function, J. Math. Anal. Appl., 324 (2006), 525-531.
  • Savas, E., Lacunary statistical convergence of double sequences in topological groups, J. Inequal. Appl., 480 (2014). https://doi.org/10.1186/1029-242X-2014-480
  • Savas, E., $I_{\lambda}$−double statistical convergence of order $\alpha$ in topological groups, Ukrainian Math. J., 68 (2016), 1251-1258.
  • Savas, E., Patterson, R. F., Lacunary statistical convergence of multiple sequences, Appl. Math. Lett., 19 (2006), 527-534. https://doi.org/10.1016/j.aml.2005.06.018
  • Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly., 66 (1959), 361-375.
  • Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
  • Zygmund, A., Trigonometric Series, Cambridge University Press, New York, NY, USA, 1st edition, 1959.
Year 2023, Volume: 72 Issue: 2, 449 - 461, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1114983

Abstract

References

  • Alotaibi, A., Mursaleen, M., Raj, K., Double sequence spaces by means of Orlicz functions, Abstr. Appl. Anal., Article ID 260326 (2014). https://doi.org/ 10.1155/2014/260326
  • Çolak, R., Altin, Y., Statistical convergence of double sequences of order $\alpha$, J. Funct. Spaces Appl., Article ID 682823 (2013). https://doi.org/10.1155/2013/682823
  • Demirci, I. A., Gürdal, M., Lacunary statistical convergence for sets of triple sequences via Orlicz function, Theory. App. Math. & Computer Sci., 11(1) (2021), 1-13.
  • Demirci, I. A., Gürdal, M., On lacunary statistically $\phi$−convergence for triple sequences of sets via ideals, J. Appl. Math. and Inf., 40(3-4) (2022), 433-444. https://doi.org/10.14317/jami.2022.433
  • Et, M., Nuray, F., m-statistical convergence, Indian J. Pure Appl. Math,, 32(6) (2001), 961-969.
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
  • Fridy, J.A., On statistical convergence, Analysis, 5 (1985), 301-313.
  • Huban, M. B., Gürdal, M., Wijsman lacunary invariant statistical convergence for triple sequences via Orlicz function, J. Class. Anal., 17(2) (2021), 119-128. https://doi.org/10.7153/jca-2021-17-08
  • Huban, M. B., Gürdal, M., Deferred invariant statistical convergent triple sequences via Orlicz function, Bull. Math. Sci. Appl., 13(3) (2021), 25-38.
  • Huban, M. B., Gürdal, M., On asymptotically lacunary statistical equivalent triple sequences via ideals and Orlicz function, Honam Math. J., 43(2) (2021), 343-357.
  • Huban, M. B., Gürdal, M., On asymptotically invariant $\lambda$−statistical $\phi$−equivalent triple sequences, Electron. J. Math. Anal. Appl., 10(1) (2022), 175-183.
  • Kişi, Ö., Güler, E., Deferred statistical convergence of double sequences in intuitionistic fuzzy normed linear spaces, Turk. J. Math. and Comp. Sci., 11 (2019), 95-104.
  • Khan, V., Khan, N., Esi, A., Tabassum, S., I-pre-Cauchy double sequences and Orlicz functions, Engineering, 5(5A) (2013), 52-356. https:// 10.4236/eng.2013.55A008
  • Krasnoselski, M. A., Rutitsky, Y. B., Convex Functions and Orlicz Spaces, Groningen, Netherlands, 1961.
  • Lindenstrauss, J., Tzafriri, L., On Orlicz sequence spaces, Isr. J. Math., 10(3) (1971), 379-390.
  • Miller, H. I., A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1995), 1811-1819.
  • Mohiuddine, S. A., Raj, K., Alotaibi, A., Generalized spaces of double sequences for Orlicz functions and bounded-regular matrices over n-Normed spaces, J. Inequal. Appl., 332 (2014). https://doi.org/10.1186/1029-242X-2014-332
  • Mursaleen, M., Edely, O. H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223-231.
  • Mursaleen, M., Cakan, C., Mohiuddine, S. A., Savas, E., Generalized statistical convergence and statistical core of double sequences, Acta Math. Sin. Engl. Ser., 26(11) (2010), 2131-2144.
  • Pringsheim, A., Zur theorie der zweifach unendlichen zahlen folgen, Math. Ann., 53 (1900), 289-321.
  • Savas, E., Patterson, R. F., Some $\sigma$−double sequence spaces defined by Orlicz function, J. Math. Anal. Appl., 324 (2006), 525-531.
  • Savas, E., Lacunary statistical convergence of double sequences in topological groups, J. Inequal. Appl., 480 (2014). https://doi.org/10.1186/1029-242X-2014-480
  • Savas, E., $I_{\lambda}$−double statistical convergence of order $\alpha$ in topological groups, Ukrainian Math. J., 68 (2016), 1251-1258.
  • Savas, E., Patterson, R. F., Lacunary statistical convergence of multiple sequences, Appl. Math. Lett., 19 (2006), 527-534. https://doi.org/10.1016/j.aml.2005.06.018
  • Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly., 66 (1959), 361-375.
  • Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
  • Zygmund, A., Trigonometric Series, Cambridge University Press, New York, NY, USA, 1st edition, 1959.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Rabia Savas 0000-0002-4911-9067

Publication Date June 23, 2023
Submission Date May 10, 2022
Acceptance Date August 11, 2022
Published in Issue Year 2023 Volume: 72 Issue: 2

Cite

APA Savas, R. (2023). New summability methods via $\widetilde{\phi}$ functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(2), 449-461. https://doi.org/10.31801/cfsuasmas.1114983
AMA Savas R. New summability methods via $\widetilde{\phi}$ functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2023;72(2):449-461. doi:10.31801/cfsuasmas.1114983
Chicago Savas, Rabia. “New Summability Methods via $\widetilde{\phi}$ Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 2 (June 2023): 449-61. https://doi.org/10.31801/cfsuasmas.1114983.
EndNote Savas R (June 1, 2023) New summability methods via $\widetilde{\phi}$ functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 2 449–461.
IEEE R. Savas, “New summability methods via $\widetilde{\phi}$ functions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 2, pp. 449–461, 2023, doi: 10.31801/cfsuasmas.1114983.
ISNAD Savas, Rabia. “New Summability Methods via $\widetilde{\phi}$ Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/2 (June 2023), 449-461. https://doi.org/10.31801/cfsuasmas.1114983.
JAMA Savas R. New summability methods via $\widetilde{\phi}$ functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:449–461.
MLA Savas, Rabia. “New Summability Methods via $\widetilde{\phi}$ Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 2, 2023, pp. 449-61, doi:10.31801/cfsuasmas.1114983.
Vancouver Savas R. New summability methods via $\widetilde{\phi}$ functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(2):449-61.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.