Characterization of a paraSasakian manifold admitting Bach tensor
Year 2023,
Volume: 72 Issue: 3, 826 - 838, 30.09.2023
U.c. De
,
Gopal Ghosh
,
Krishnendu De
Abstract
In the present article, our aim is to characterize Bach flat paraSasakian manifolds. It is established that a Bach flat paraSasakian manifold of dimension greater than three is of constant scalar curvature. Next, we prove that if the metric of a Bach flat paraSasakian manifold is a Yamabe soliton, then the soliton field becomes a Killing vector field. Finally, it is shown that a 3-dimensional Bach flat paraSasakian manifold is locally isometric to the hyperbolic space $H^{2n+1}(1)$.
References
- Adati, T., Matsumuto. K., On conformally recurrent and conformally symmetric P-Sasakianmanifolds, TRU Math., 13 (1977), 25-32.
- Bach, R., Zur weylschen relativitatstheorie und der Weylschen erweiterung des krummungstensorbegriffs, Math. Z., 9 (1921), 110-135.
- Bergman, J., Conformal Einstein spaces and Bach tensor generalization in n-dimensions, Thesis, Linkoping (2004).
- Deshmukh, S., Chen, B. Y., A note on Yamabe solitons, Balk. J. Geom. Appl., 23 (2018), 37-43.
- De, K., De, U. C., A note on almost Ricci soliton and gradient almost Ricci soliton on para-Sasakian manifolds, Korean J. Math., 28 (2020), 739-751. https://doi.org/10.11568/kjm.2020.28.4.739
- De, K., De, U. C., δ-almost Yamabe solitons in paracontact metric manifolds, Mediterr. J. Math., 18, 218 (2021). DOI:10.1007/s00009-021-01856-9
- Duggal, K. L., Sharma, R., Symmetries of spacetimes and Riemannian manifolds, Kluwer Academic Publishers, 1999.
- De, U. C., Ghosh, G., Jun, J. B., Majhi, P., Some results on paraSasakian manifolds, Bull. Translivania Univ. Brasov, Series III:Mathematics, Informatics, Physics., 60 (2018), 49-64.
- Erken, I. K., Dacko, P. and Murathan, C., Almost paracosymplectic manifolds, J. Geom. Phys., 88 (2015), 30-51. DOI: 10.21099/tkbjm/1496164721
- Erken, I. K. and Murathan, C., A complete study of three-dimensional paracontact $(\widetilde{\kappa},\widetilde{\mu},\widetilde{\nu})$-spaces, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750106.https://doi.org/10.1142/S0219887817501067
- Erken, I. K., Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Periodica Mathematica Hungarica, 80 (2020), 172-184. https://doi.org/10.1007/s10998-019-00303-3
- Fu, H. P. and Peng, J. K., Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J., 47 (2018), 581-605. https://doi.org/10.14492/HOKMJ/2F1537948832
- Hamilton, R., The Ricci flow on surface, Contemp. Math., 71 (1988), 237-267.
- Pedersen, H., Swann, A., Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. Reine Angew. Math., 441 (1993), 99-113.
- Sato, I., On a structure similar to the almost contact structure, Tensor, N. S., 30 (1976), 219-224.
- Suh, Y. J., De, U. C., Yamabe soliton and Ricci solitons on almost co-Kahler manifolds, Can. Math. Bull., 62 (2019), 653-661. http://dx.doi.org/10.4153/S0008439518000693
- Matsumuto. K., Ianus, S. and Mihai, I., On P-Sasakian manifolds which admit certain tensor fields, Publ. Math. Debrecen., 33 (1986), 61-65.
- Mihai, I., Rosca, R., On Lorentzian P-Sasakian Manifolds, Classical Analysis,World Scientific Publ., 156-169 (1992).
- Mihai, I., Some structures defined on the tangent bundle of a P-Sasakian manifold, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S), 77 (1985), 61-67.
- Kaneyuki, S., Willams, F. L., Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
- Kaneyuki, S., Kozai, M., Paracomplex structures and affine symmetric spaces, Tokyo J. of Math., 08 (1985), 81-98.
- O’Neill, B., Semi-Riemannian Geometry with Applications to the Relativity, Academic Press, New York-London, 1983.
- Sharma, R., Ghosh, A., Sasakian manifolds with purely transversal Bach tensor, J. Math. Phys., 58 103502 (2017). doi: 10.1063/1.4986492
- Sharma, R., Ghosh, A., Classification of $(k,\mu)$-contact manifolds with divergence free Cotton tensor and Vanishing Bach tensor, Ann. Polon. Math., (2019). DOI: 10.4064/ap 180228-13-11
- Szekeres, P., Conformal tensors, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 304, No. 1476 (Apr. 2, 1968), 113-122.
- Wang, Y., Yamabe solitons on three dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc., 23 (2016), 345-355. http://dx.doi.org/10.36045/bbms/1473186509
- Zamkovoy, S., Canonical connection on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60. http://dx.doi.org/10.1007/s10455-008-9147-3
Year 2023,
Volume: 72 Issue: 3, 826 - 838, 30.09.2023
U.c. De
,
Gopal Ghosh
,
Krishnendu De
References
- Adati, T., Matsumuto. K., On conformally recurrent and conformally symmetric P-Sasakianmanifolds, TRU Math., 13 (1977), 25-32.
- Bach, R., Zur weylschen relativitatstheorie und der Weylschen erweiterung des krummungstensorbegriffs, Math. Z., 9 (1921), 110-135.
- Bergman, J., Conformal Einstein spaces and Bach tensor generalization in n-dimensions, Thesis, Linkoping (2004).
- Deshmukh, S., Chen, B. Y., A note on Yamabe solitons, Balk. J. Geom. Appl., 23 (2018), 37-43.
- De, K., De, U. C., A note on almost Ricci soliton and gradient almost Ricci soliton on para-Sasakian manifolds, Korean J. Math., 28 (2020), 739-751. https://doi.org/10.11568/kjm.2020.28.4.739
- De, K., De, U. C., δ-almost Yamabe solitons in paracontact metric manifolds, Mediterr. J. Math., 18, 218 (2021). DOI:10.1007/s00009-021-01856-9
- Duggal, K. L., Sharma, R., Symmetries of spacetimes and Riemannian manifolds, Kluwer Academic Publishers, 1999.
- De, U. C., Ghosh, G., Jun, J. B., Majhi, P., Some results on paraSasakian manifolds, Bull. Translivania Univ. Brasov, Series III:Mathematics, Informatics, Physics., 60 (2018), 49-64.
- Erken, I. K., Dacko, P. and Murathan, C., Almost paracosymplectic manifolds, J. Geom. Phys., 88 (2015), 30-51. DOI: 10.21099/tkbjm/1496164721
- Erken, I. K. and Murathan, C., A complete study of three-dimensional paracontact $(\widetilde{\kappa},\widetilde{\mu},\widetilde{\nu})$-spaces, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750106.https://doi.org/10.1142/S0219887817501067
- Erken, I. K., Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Periodica Mathematica Hungarica, 80 (2020), 172-184. https://doi.org/10.1007/s10998-019-00303-3
- Fu, H. P. and Peng, J. K., Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J., 47 (2018), 581-605. https://doi.org/10.14492/HOKMJ/2F1537948832
- Hamilton, R., The Ricci flow on surface, Contemp. Math., 71 (1988), 237-267.
- Pedersen, H., Swann, A., Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. Reine Angew. Math., 441 (1993), 99-113.
- Sato, I., On a structure similar to the almost contact structure, Tensor, N. S., 30 (1976), 219-224.
- Suh, Y. J., De, U. C., Yamabe soliton and Ricci solitons on almost co-Kahler manifolds, Can. Math. Bull., 62 (2019), 653-661. http://dx.doi.org/10.4153/S0008439518000693
- Matsumuto. K., Ianus, S. and Mihai, I., On P-Sasakian manifolds which admit certain tensor fields, Publ. Math. Debrecen., 33 (1986), 61-65.
- Mihai, I., Rosca, R., On Lorentzian P-Sasakian Manifolds, Classical Analysis,World Scientific Publ., 156-169 (1992).
- Mihai, I., Some structures defined on the tangent bundle of a P-Sasakian manifold, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S), 77 (1985), 61-67.
- Kaneyuki, S., Willams, F. L., Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
- Kaneyuki, S., Kozai, M., Paracomplex structures and affine symmetric spaces, Tokyo J. of Math., 08 (1985), 81-98.
- O’Neill, B., Semi-Riemannian Geometry with Applications to the Relativity, Academic Press, New York-London, 1983.
- Sharma, R., Ghosh, A., Sasakian manifolds with purely transversal Bach tensor, J. Math. Phys., 58 103502 (2017). doi: 10.1063/1.4986492
- Sharma, R., Ghosh, A., Classification of $(k,\mu)$-contact manifolds with divergence free Cotton tensor and Vanishing Bach tensor, Ann. Polon. Math., (2019). DOI: 10.4064/ap 180228-13-11
- Szekeres, P., Conformal tensors, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 304, No. 1476 (Apr. 2, 1968), 113-122.
- Wang, Y., Yamabe solitons on three dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc., 23 (2016), 345-355. http://dx.doi.org/10.36045/bbms/1473186509
- Zamkovoy, S., Canonical connection on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60. http://dx.doi.org/10.1007/s10455-008-9147-3