Research Article
BibTex RIS Cite

Fractional Dirac systems with Mittag-Leffler kernel

Year 2024, Volume: 73 Issue: 1, 1 - 12, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1298907

Abstract

In this paper, we study some fractional Dirac-type systems with the Mittag–Leffler kernel. We extend the basic spectral properties of the ordinary Dirac system to the Dirac-type systems with the Mittag–Leffler kernel. First, this problem was handled in a continuous form. The self-adjointness of the operator produced by this system, the reality of its eigenvalues, and the orthogonality of the eigenfunctions have been investigated. Later, similar results were obtained by considering the discrete state.

References

  • Abdeljawad, T., Baleanu, D., Integration by parts and its applications of a new non-local fractional derivative with Mittag–Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10(3) (2017), 1098-1107. http://dx.doi.org/10.22436/jnsa.010.03.20
  • Abdeljawad, T., On Delta and Nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), Art. ID 406910, 1-12. https://doi.org/10.1155/2013/406910
  • Abdeljawad, T., Dual identities in fractional difference calculus within Riemann, Adv. Differ. Equ., 2013 (2013), 1-16. https://doi.org/10.1186/1687-1847-2013-36
  • Atangana, A., Baleanu, D., New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. https://doi.org/10.2298/TSCI160111018A
  • Abdeljawad, T., Baleanu, D., Discrete fractional differences with nonsingular discrete Mittag–Leffler kernels, Adv. Differ. Equ., 2016(232) (2016), 1-18. https://doi.org/10.1186/s13662-016-0949-5
  • Atici, F. M., Eloe, P. W., Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., Spec. Ed. I , 2009 (2009), 1-12.
  • Bas, E., Ozarslan, R., Baleanu, D., Ercan, A., Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular operators, Adv. Diff. Equ., 2018(350) (2018). https://doi.org/10.1186/s13662-018-1803-8
  • Ercan, A., On the fractional Dirac systems with non-singular operators, Thermal science, 23(6) 2019, 2159-2168. https://doi.org/10.2298/TSCI190810405E
  • Erdelyi, A., Book Reviews: Higher Transcendental Functions. Vol. III. Based in Part on Notes Left by Harry Bateman. Science, 122, 290, 1955.
  • Goodrich, C., Peterson, A. C., Discrete Fractional Calculus, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-25562-0
  • Levitan, B. M., Sargsjan, I. S., Sturm–Liouville and Dirac operators. Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from the Russian).
  • Mert, R., Abdeljawad, T., Peterson, A., A Sturm–Liouville approach for continuous and discrete Mittag–Leffler kernel fractional operators, Discr. Contin. Dynam. System, Series S, 14(7) (2021), 2417-2434. https://doi.org/10.3934/dcdss.2020171
  • Yalçınkaya, Y., Some fractional Dirac systems, Turkish J. Math., 47 (2023), 110–122. doi:10.55730/1300-0098.3349
Year 2024, Volume: 73 Issue: 1, 1 - 12, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1298907

Abstract

References

  • Abdeljawad, T., Baleanu, D., Integration by parts and its applications of a new non-local fractional derivative with Mittag–Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10(3) (2017), 1098-1107. http://dx.doi.org/10.22436/jnsa.010.03.20
  • Abdeljawad, T., On Delta and Nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), Art. ID 406910, 1-12. https://doi.org/10.1155/2013/406910
  • Abdeljawad, T., Dual identities in fractional difference calculus within Riemann, Adv. Differ. Equ., 2013 (2013), 1-16. https://doi.org/10.1186/1687-1847-2013-36
  • Atangana, A., Baleanu, D., New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. https://doi.org/10.2298/TSCI160111018A
  • Abdeljawad, T., Baleanu, D., Discrete fractional differences with nonsingular discrete Mittag–Leffler kernels, Adv. Differ. Equ., 2016(232) (2016), 1-18. https://doi.org/10.1186/s13662-016-0949-5
  • Atici, F. M., Eloe, P. W., Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., Spec. Ed. I , 2009 (2009), 1-12.
  • Bas, E., Ozarslan, R., Baleanu, D., Ercan, A., Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular operators, Adv. Diff. Equ., 2018(350) (2018). https://doi.org/10.1186/s13662-018-1803-8
  • Ercan, A., On the fractional Dirac systems with non-singular operators, Thermal science, 23(6) 2019, 2159-2168. https://doi.org/10.2298/TSCI190810405E
  • Erdelyi, A., Book Reviews: Higher Transcendental Functions. Vol. III. Based in Part on Notes Left by Harry Bateman. Science, 122, 290, 1955.
  • Goodrich, C., Peterson, A. C., Discrete Fractional Calculus, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-25562-0
  • Levitan, B. M., Sargsjan, I. S., Sturm–Liouville and Dirac operators. Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from the Russian).
  • Mert, R., Abdeljawad, T., Peterson, A., A Sturm–Liouville approach for continuous and discrete Mittag–Leffler kernel fractional operators, Discr. Contin. Dynam. System, Series S, 14(7) (2021), 2417-2434. https://doi.org/10.3934/dcdss.2020171
  • Yalçınkaya, Y., Some fractional Dirac systems, Turkish J. Math., 47 (2023), 110–122. doi:10.55730/1300-0098.3349
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Bilender Allahverdiev This is me 0000-0002-9315-4652

Hüseyin Tuna 0000-0001-7240-8687

Publication Date March 16, 2024
Submission Date May 18, 2023
Acceptance Date September 25, 2023
Published in Issue Year 2024 Volume: 73 Issue: 1

Cite

APA Allahverdiev, B., & Tuna, H. (2024). Fractional Dirac systems with Mittag-Leffler kernel. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(1), 1-12. https://doi.org/10.31801/cfsuasmas.1298907
AMA Allahverdiev B, Tuna H. Fractional Dirac systems with Mittag-Leffler kernel. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2024;73(1):1-12. doi:10.31801/cfsuasmas.1298907
Chicago Allahverdiev, Bilender, and Hüseyin Tuna. “Fractional Dirac Systems With Mittag-Leffler Kernel”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 1 (March 2024): 1-12. https://doi.org/10.31801/cfsuasmas.1298907.
EndNote Allahverdiev B, Tuna H (March 1, 2024) Fractional Dirac systems with Mittag-Leffler kernel. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 1 1–12.
IEEE B. Allahverdiev and H. Tuna, “Fractional Dirac systems with Mittag-Leffler kernel”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 1, pp. 1–12, 2024, doi: 10.31801/cfsuasmas.1298907.
ISNAD Allahverdiev, Bilender - Tuna, Hüseyin. “Fractional Dirac Systems With Mittag-Leffler Kernel”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/1 (March 2024), 1-12. https://doi.org/10.31801/cfsuasmas.1298907.
JAMA Allahverdiev B, Tuna H. Fractional Dirac systems with Mittag-Leffler kernel. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:1–12.
MLA Allahverdiev, Bilender and Hüseyin Tuna. “Fractional Dirac Systems With Mittag-Leffler Kernel”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 1, 2024, pp. 1-12, doi:10.31801/cfsuasmas.1298907.
Vancouver Allahverdiev B, Tuna H. Fractional Dirac systems with Mittag-Leffler kernel. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(1):1-12.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.