Research Article
BibTex RIS Cite

Notes on the geometry of cotangent bundle and unit cotangent sphere bundle

Year 2024, Volume: 73 Issue: 3, 845 - 859, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1431646

Abstract

Let $(\mathtt{N},\mathfrak{g})$ be a Riemannian manifold, by using the musical isomorphisms ♪ and $\natural$ induced by $\mathfrak{g}$, we built a bridge between the geometry of the tangent bundle $\mathtt{TN}$ (resp. the unit tangent sphere bundle $\mathtt{T}_{1}\mathtt{N}$) equipped with the Sasaki metric $\mathfrak{g}_{S}$ (resp. the induced Sasaki metric $\bar{\mathfrak{g}}_{S}$) and that of the cotangent bundle $\mathtt{T}^{\ast}\mathtt{N}$ (resp. the unit cotangent sphere bundle $\mathtt{T}_{1}^{\ast}\mathtt{N}$) endowed with the Sasaki metric $\mathfrak{g}_{\widetilde{S}}$ (resp. the induced Sasaki metric $\tilde{\mathfrak{g}}_{\widetilde{S}}$). Moreover, we prove that $\mathtt{T}_{1}^{\ast}\mathtt{N}$ carries a contact metric structure and study some of its proprieties.

References

  • Akbulut, S., Özdemir, M., Salimov, A. A., Diagonal lift in the cotangent bundle and its applications, Turk. J. Math., 25(4) (2001), 491-502.
  • Blair, D. E., When is the tangent sphere bundle locally symmetric?, Geometry and Topology, World Scientific, March (1989), 15-30. https://doi.org/10.1142/9789814434225 0002
  • Boeckx, E., Vanhecke, L., Characteristic reflections on unit tangent sphere bundles, Houst. J. Math., 23 (1997), 427-448.
  • Boeckx, E., Vanhecke, L., Geometry of Riemannian manifolds and their unit tangent sphere bundles, Publ. Math. Debrecen, 57(3-4) (2000), 509-533. https://doi.org/10.5486/PMD.2000.2349
  • Calvaruso, G., Contact metric geometry of the unit tangent sphere bundle, complex, contact and symmetric manifolds, in: Complex, Contact and Symmetric Manifolds (eds. O. Kowalski, E. Musso and D. Perrone), Progress in Mathematics, 234 (2005), 41-57. https://doi.org/10.1007/b138831
  • Carpenter, P., Gray, A., Willmore, T. J., The curvature of einstein symmetric spaces, Q. J. Math. Oxford, 33(1) (1982), 45-64. https://doi.org/10.1093/qmath/33.1.45
  • Dombrowski, P., On the geometry of tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88.
  • Dragomir, S., Perrone, D., Harmonic Vector Fields: Variational Principles and Differential Geometry, Elsevier, Amsterdam, 2011.
  • Gudmundsson, S., Kappos, E., On the geometry of tangent bundles, Expo. Math., 20 (2002), 1-41. https://doi.org/10.1016/S0723-0869(02)80027-5
  • Kadi, F. Z., Kacimi, B., Özkan, M., Some results on harmonic metrics, Mediterr. J. Math., 20 (2023), 111. https://doi.org/10.1007/s00009-023-02320-6
  • Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250 (1971), 124-129.
  • Musso, E., Tricerri, F., Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl., 150(4) (1988), 1-19. https://doi.org/10.1007/BF01761461
  • Nikolayevsky, Y., Park, J. H., H-contact unit tangent sphere bundles of Riemannian manifolds, Diff. Geom. Appl., 49 (2016), 301-311. https://doi.org/10.1016/j.difgeo.2016.09.002
  • Perrone, D., Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differ. Geom. Appl., 20 (2004), 367-378. https://doi.org/10.1016/j.difgeo.2003.12.007
  • Salimov, A. A., Agca, F., Some properties of Sasakian metrics in cotangent bundles, Mediterr. J. Math., 8 (2011), 243-255. https://doi.org/10.1007/s00009-010-0080-x
  • Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-354. https://doi.org/10.2748/tmj/1178244668
  • Tashiro, Y., On contact structures on tangent sphere bundles, Tohoku Math. J., 21 (1969), 117-143. https://doi.org/10.2748/tmj/1178243040
  • Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Dekker, New York, 1973.
Year 2024, Volume: 73 Issue: 3, 845 - 859, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1431646

Abstract

References

  • Akbulut, S., Özdemir, M., Salimov, A. A., Diagonal lift in the cotangent bundle and its applications, Turk. J. Math., 25(4) (2001), 491-502.
  • Blair, D. E., When is the tangent sphere bundle locally symmetric?, Geometry and Topology, World Scientific, March (1989), 15-30. https://doi.org/10.1142/9789814434225 0002
  • Boeckx, E., Vanhecke, L., Characteristic reflections on unit tangent sphere bundles, Houst. J. Math., 23 (1997), 427-448.
  • Boeckx, E., Vanhecke, L., Geometry of Riemannian manifolds and their unit tangent sphere bundles, Publ. Math. Debrecen, 57(3-4) (2000), 509-533. https://doi.org/10.5486/PMD.2000.2349
  • Calvaruso, G., Contact metric geometry of the unit tangent sphere bundle, complex, contact and symmetric manifolds, in: Complex, Contact and Symmetric Manifolds (eds. O. Kowalski, E. Musso and D. Perrone), Progress in Mathematics, 234 (2005), 41-57. https://doi.org/10.1007/b138831
  • Carpenter, P., Gray, A., Willmore, T. J., The curvature of einstein symmetric spaces, Q. J. Math. Oxford, 33(1) (1982), 45-64. https://doi.org/10.1093/qmath/33.1.45
  • Dombrowski, P., On the geometry of tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88.
  • Dragomir, S., Perrone, D., Harmonic Vector Fields: Variational Principles and Differential Geometry, Elsevier, Amsterdam, 2011.
  • Gudmundsson, S., Kappos, E., On the geometry of tangent bundles, Expo. Math., 20 (2002), 1-41. https://doi.org/10.1016/S0723-0869(02)80027-5
  • Kadi, F. Z., Kacimi, B., Özkan, M., Some results on harmonic metrics, Mediterr. J. Math., 20 (2023), 111. https://doi.org/10.1007/s00009-023-02320-6
  • Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250 (1971), 124-129.
  • Musso, E., Tricerri, F., Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl., 150(4) (1988), 1-19. https://doi.org/10.1007/BF01761461
  • Nikolayevsky, Y., Park, J. H., H-contact unit tangent sphere bundles of Riemannian manifolds, Diff. Geom. Appl., 49 (2016), 301-311. https://doi.org/10.1016/j.difgeo.2016.09.002
  • Perrone, D., Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differ. Geom. Appl., 20 (2004), 367-378. https://doi.org/10.1016/j.difgeo.2003.12.007
  • Salimov, A. A., Agca, F., Some properties of Sasakian metrics in cotangent bundles, Mediterr. J. Math., 8 (2011), 243-255. https://doi.org/10.1007/s00009-010-0080-x
  • Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-354. https://doi.org/10.2748/tmj/1178244668
  • Tashiro, Y., On contact structures on tangent sphere bundles, Tohoku Math. J., 21 (1969), 117-143. https://doi.org/10.2748/tmj/1178243040
  • Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Dekker, New York, 1973.
There are 18 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Articles
Authors

Bouazza Kacımı 0000-0002-5225-8455

Fatima Zohra Kadı 0009-0000-6225-1778

Mustafa Özkan 0000-0002-5883-2294

Publication Date September 27, 2024
Submission Date February 5, 2024
Acceptance Date June 6, 2024
Published in Issue Year 2024 Volume: 73 Issue: 3

Cite

APA Kacımı, B., Kadı, F. Z., & Özkan, M. (2024). Notes on the geometry of cotangent bundle and unit cotangent sphere bundle. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(3), 845-859. https://doi.org/10.31801/cfsuasmas.1431646
AMA Kacımı B, Kadı FZ, Özkan M. Notes on the geometry of cotangent bundle and unit cotangent sphere bundle. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2024;73(3):845-859. doi:10.31801/cfsuasmas.1431646
Chicago Kacımı, Bouazza, Fatima Zohra Kadı, and Mustafa Özkan. “Notes on the Geometry of Cotangent Bundle and Unit Cotangent Sphere Bundle”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 3 (September 2024): 845-59. https://doi.org/10.31801/cfsuasmas.1431646.
EndNote Kacımı B, Kadı FZ, Özkan M (September 1, 2024) Notes on the geometry of cotangent bundle and unit cotangent sphere bundle. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 3 845–859.
IEEE B. Kacımı, F. Z. Kadı, and M. Özkan, “Notes on the geometry of cotangent bundle and unit cotangent sphere bundle”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 3, pp. 845–859, 2024, doi: 10.31801/cfsuasmas.1431646.
ISNAD Kacımı, Bouazza et al. “Notes on the Geometry of Cotangent Bundle and Unit Cotangent Sphere Bundle”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/3 (September 2024), 845-859. https://doi.org/10.31801/cfsuasmas.1431646.
JAMA Kacımı B, Kadı FZ, Özkan M. Notes on the geometry of cotangent bundle and unit cotangent sphere bundle. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:845–859.
MLA Kacımı, Bouazza et al. “Notes on the Geometry of Cotangent Bundle and Unit Cotangent Sphere Bundle”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 3, 2024, pp. 845-59, doi:10.31801/cfsuasmas.1431646.
Vancouver Kacımı B, Kadı FZ, Özkan M. Notes on the geometry of cotangent bundle and unit cotangent sphere bundle. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(3):845-59.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.