Year 2024,
Volume: 73 Issue: 3, 802 - 819, 27.09.2024
Muhammad Asim
,
Ferit Gürbüz
References
- Hardy, G. H., Note on a theorem of Hilbert, Math. Z., 6 (1920), 314-317.https://doi.org/10.1007/BF01199965
- Faris, W. G., Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43(4) (1976), 365-373. https://doi.org/10.1215/S0012-7094-76-04332-5
- Christ, M., Grafakos, L., Best constants for two non convolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687-1693. https://doi.org/10.2307/2160978
- Sawyer, E., Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc., 281 (1984), 329-337. https://doi.org/10.2307/1999537
- Fu, Z., Liu, Z., Lu, S., Wang, H., Charactrization for commutators of n-dimensional fractional Hardy operators, Sci. China Ser. A., 50 (2007), 1418-1426.https://doi.org/10.1007/s11425-007-0094-4.
- Ren, Z., Tao, S., Weighted estimates for commutators of n-dimensional rough hardy operators, J. Funt. Spaces., (2013), 1-13. https://doi.org/10.1155/2013/568202
- Fu, Z., Lu, S., Zhao, F., Commutators of n-dimensional rough Hardy operators, Sci. China Ser. A., 54(2011), 95-104. https://doi.org/10.1007/s11425-010-4110-8
- Orlicz, W., Über konjugierte exponentenfolgen, Studia Math., 3(1931), 200-212. https://doi.org/10.4064/SM-3-1-200-211
- Nakano, H., Modulared Semi-Ordered Linear Spaces, Maruzen Co, Ltd, Tokyo, 1951.
- Uribe, D. C., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 31(2006), 239-264.
- Dining, L., Reisz potential and Soblev embedding on genealized Lesbesgue and Sobolev $L^{p(·)}$ and $W^{k,p(·)}$, Math. Nachr., 268 (2004), 31-43. https://doi.org/10.1002/mana.200310157
- Uribe, D. C., Fiorenza, A., Neugebauer, A., The maximal function on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223-238.
- Uribe, D. C., Diening, L., Fiorenza, A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital., 2 (2009), 151-173. http://eudml.org/doc/290576
- Alvarez, J., Lakey, J., Partida, M. G., Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math., 51(2000), 1-47.
- Morrey, C., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43(1938), 126-166. https://doi.org/10.1090/S0002-9947-1938-1501936-8
- Chuong, N., Duong, D., Hung, H., Bounds for the weighted Hardy-Cesaro operator and its commutator on Morrey-Herz type spaces, Z. Anal. Anwend., 35 (2016), 489-504. https://doi.org/10.4171/ZAA/1575
- Wu, Q., Fu, Z., Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group, Banach J. Math. Anal., 12 (2018), 909-934. https://doi.org/10.1215/17358787-2018-0006
- Chen, Y., Levin, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. https://doi.org/10.1137/050624522
- Ruicka, M., Electrorheogical Fluid: Modeling and Mathematical Theory, Springer, Berlin, 2000.
- Yang, M., Fu, Z., Sun, J., Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces, Dis. Contin. Dyn. Syst. Ser. B., 23 (2018), 3427-3460. https://doi.org/10.3934/dcdsb.2018284
- Kováčik, O., Rákosník, J., On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618. https://doi.org/10.21136/CMJ.1991.102493
- Mizuta, Y., Ohno, T., Shimomura, T., Boundedness of maximal operators and Sobolev’s theorem for non-homogeneous central Morrey spaces of variable exponent, Hokkaido Math. J., 44 (2015), 185-201. https://doi.org/10.14492/hokmj/1470053290
- Wang, D., Liu, Z., Zhou, J., Teng, Z., Central BMO spaces with variable exponent, arXiv:1708.00285, 2017.
- Fu, Z., Lu, S., Wang, H., Wang, L., Singular integral operators with rough kernel on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn. Math., 44 (2019), 505-522. https://doi.org/10.5186/aasfm.2019.4431
- Hussain, A., Asim, M., Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funt. Space.., ID 9705250(2021), 10 pages. doi.org/10.1155/2021/9705250.
- Hussain, A., Asim, M., Variable λ-central Morrey space estimates for the fractional Hardy operators and commutators, J. Math., ID 5855068(2022), 12 pages. https://doi.org/10.1155/2022/5855068
- Asim, M., Hussain, A., Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inq. Appl., 2(2022) (2022) 12pp. doi.org/10.1186/s13660-021-02739-z
- Huang, A., Xu, J., Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69-77. https://doi.org/10.1007/s11766-010-2167-3
- Asim, M., Ayoob, I., Weighted estimates for fractional bilinear Hardy operators on variable exponent Morrey-Herz space, J. Inq. Appl., 11(2024) 2024 19pp. doi.org/10.1186/s13660-024-03092-7
- Jianglong, W., Boundedness of some sublinear operators on Herz-Morrey spaces with variable exponent, Georgian Math. J., 21 (2014), 101-111. https://doi.org/10.1515/gmj-2014-0004
- Wu, J. L., Zhao, W. J., Boundedness for fractional Hardy-type operator on variableexponent Herz-Morrey spaces, Kyoto J. Math., 56 (2016), 831-845. https://doi.org/10.1215/21562261-3664932
- Nekavinda, A., Hardy-Littlewood maximal operator on $L^{p(x)}(R)$, Math. Inequal. Appl., 7 (2004), 255-265. https://doi.org/10.7153/mia-07-28
- Diening, L., Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 129 (2005), 657-700. https://doi.org/10.1016/j.bulsci.2003.10.003
- Izuki, M., Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343-355. https://doi.org/10.32917/hmj/1291818849.
- Grafakos, L., Modern Fourier Analysis , 2nd edition, Springer, 2009.
- Izuki, M., Boundedness of commutators on Herz spaces with variable exponent, Rendiconti del Circolo Matematico di Palermo., 59 (2010), 199-213. https://doi.org/10.1007/s12215-010-0015-1
- Capone, C., Uribe, D. C., Fiorenza, A., The fractional maximal operator and fractional integrals on variable Lp(R) spaces, Rev. Mat. Iberoam., 23 (2007), 743-770. https://doi.org/10.4171/RMI/511
Some variable exponent boundedness and commutators estimates for fractional Rough Hardy operators on central Morrey space
Year 2024,
Volume: 73 Issue: 3, 802 - 819, 27.09.2024
Muhammad Asim
,
Ferit Gürbüz
Abstract
In this article, we study the boundedness of the fractional Rough Hardy operator and its adjoint operators on the central Morrey space with a variable exponent. We also establish the same boundedness for their commutators when the symbol functions are on the λ-central BMO space with a variable exponent.
References
- Hardy, G. H., Note on a theorem of Hilbert, Math. Z., 6 (1920), 314-317.https://doi.org/10.1007/BF01199965
- Faris, W. G., Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43(4) (1976), 365-373. https://doi.org/10.1215/S0012-7094-76-04332-5
- Christ, M., Grafakos, L., Best constants for two non convolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687-1693. https://doi.org/10.2307/2160978
- Sawyer, E., Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc., 281 (1984), 329-337. https://doi.org/10.2307/1999537
- Fu, Z., Liu, Z., Lu, S., Wang, H., Charactrization for commutators of n-dimensional fractional Hardy operators, Sci. China Ser. A., 50 (2007), 1418-1426.https://doi.org/10.1007/s11425-007-0094-4.
- Ren, Z., Tao, S., Weighted estimates for commutators of n-dimensional rough hardy operators, J. Funt. Spaces., (2013), 1-13. https://doi.org/10.1155/2013/568202
- Fu, Z., Lu, S., Zhao, F., Commutators of n-dimensional rough Hardy operators, Sci. China Ser. A., 54(2011), 95-104. https://doi.org/10.1007/s11425-010-4110-8
- Orlicz, W., Über konjugierte exponentenfolgen, Studia Math., 3(1931), 200-212. https://doi.org/10.4064/SM-3-1-200-211
- Nakano, H., Modulared Semi-Ordered Linear Spaces, Maruzen Co, Ltd, Tokyo, 1951.
- Uribe, D. C., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 31(2006), 239-264.
- Dining, L., Reisz potential and Soblev embedding on genealized Lesbesgue and Sobolev $L^{p(·)}$ and $W^{k,p(·)}$, Math. Nachr., 268 (2004), 31-43. https://doi.org/10.1002/mana.200310157
- Uribe, D. C., Fiorenza, A., Neugebauer, A., The maximal function on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223-238.
- Uribe, D. C., Diening, L., Fiorenza, A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital., 2 (2009), 151-173. http://eudml.org/doc/290576
- Alvarez, J., Lakey, J., Partida, M. G., Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math., 51(2000), 1-47.
- Morrey, C., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43(1938), 126-166. https://doi.org/10.1090/S0002-9947-1938-1501936-8
- Chuong, N., Duong, D., Hung, H., Bounds for the weighted Hardy-Cesaro operator and its commutator on Morrey-Herz type spaces, Z. Anal. Anwend., 35 (2016), 489-504. https://doi.org/10.4171/ZAA/1575
- Wu, Q., Fu, Z., Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group, Banach J. Math. Anal., 12 (2018), 909-934. https://doi.org/10.1215/17358787-2018-0006
- Chen, Y., Levin, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. https://doi.org/10.1137/050624522
- Ruicka, M., Electrorheogical Fluid: Modeling and Mathematical Theory, Springer, Berlin, 2000.
- Yang, M., Fu, Z., Sun, J., Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces, Dis. Contin. Dyn. Syst. Ser. B., 23 (2018), 3427-3460. https://doi.org/10.3934/dcdsb.2018284
- Kováčik, O., Rákosník, J., On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618. https://doi.org/10.21136/CMJ.1991.102493
- Mizuta, Y., Ohno, T., Shimomura, T., Boundedness of maximal operators and Sobolev’s theorem for non-homogeneous central Morrey spaces of variable exponent, Hokkaido Math. J., 44 (2015), 185-201. https://doi.org/10.14492/hokmj/1470053290
- Wang, D., Liu, Z., Zhou, J., Teng, Z., Central BMO spaces with variable exponent, arXiv:1708.00285, 2017.
- Fu, Z., Lu, S., Wang, H., Wang, L., Singular integral operators with rough kernel on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn. Math., 44 (2019), 505-522. https://doi.org/10.5186/aasfm.2019.4431
- Hussain, A., Asim, M., Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funt. Space.., ID 9705250(2021), 10 pages. doi.org/10.1155/2021/9705250.
- Hussain, A., Asim, M., Variable λ-central Morrey space estimates for the fractional Hardy operators and commutators, J. Math., ID 5855068(2022), 12 pages. https://doi.org/10.1155/2022/5855068
- Asim, M., Hussain, A., Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inq. Appl., 2(2022) (2022) 12pp. doi.org/10.1186/s13660-021-02739-z
- Huang, A., Xu, J., Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69-77. https://doi.org/10.1007/s11766-010-2167-3
- Asim, M., Ayoob, I., Weighted estimates for fractional bilinear Hardy operators on variable exponent Morrey-Herz space, J. Inq. Appl., 11(2024) 2024 19pp. doi.org/10.1186/s13660-024-03092-7
- Jianglong, W., Boundedness of some sublinear operators on Herz-Morrey spaces with variable exponent, Georgian Math. J., 21 (2014), 101-111. https://doi.org/10.1515/gmj-2014-0004
- Wu, J. L., Zhao, W. J., Boundedness for fractional Hardy-type operator on variableexponent Herz-Morrey spaces, Kyoto J. Math., 56 (2016), 831-845. https://doi.org/10.1215/21562261-3664932
- Nekavinda, A., Hardy-Littlewood maximal operator on $L^{p(x)}(R)$, Math. Inequal. Appl., 7 (2004), 255-265. https://doi.org/10.7153/mia-07-28
- Diening, L., Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 129 (2005), 657-700. https://doi.org/10.1016/j.bulsci.2003.10.003
- Izuki, M., Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343-355. https://doi.org/10.32917/hmj/1291818849.
- Grafakos, L., Modern Fourier Analysis , 2nd edition, Springer, 2009.
- Izuki, M., Boundedness of commutators on Herz spaces with variable exponent, Rendiconti del Circolo Matematico di Palermo., 59 (2010), 199-213. https://doi.org/10.1007/s12215-010-0015-1
- Capone, C., Uribe, D. C., Fiorenza, A., The fractional maximal operator and fractional integrals on variable Lp(R) spaces, Rev. Mat. Iberoam., 23 (2007), 743-770. https://doi.org/10.4171/RMI/511