Year 2020,
Volume: 2 Issue: 2, 52 - 57, 30.11.2020
Kom Guillaume Honoré
,
Nguemkoua Nguenjou Leopold Parfait
Cyrille Ainamon
,
Sifeu T. Kingni
References
- Arneodo, A., P. Coullet, C. Tresser, et al., 1981 Possible new strange attractors with spiral structure. Communications in Mathematical Physics 79: 573–579.
- Bouali, S., A. Buscarino, L. Fortuna, M. Frasca, and L. Gambuzza, 2012 Emulating complex business cycles by using an electronic analogue. Nonlinear Analysis: RealWorld Applications 13: 2459–2465.
- Chen, G. and T. Ueta, 1999 Yet another chaotic attractor. International Journal of Bifurcation and chaos 9: 1465–1466.
- Chua, L. O., C. W. Wu, A. Huang, and G.-Q. Zhong, 1993 A universal circuit for studying and generating chaos. i.routes to chaos. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40: 732– 744.
- Chunxia, L., Y. Jie, X. Xiangchun, A. Limin, Q. Yan, et al., 2012 Research on the multi-scroll chaos generation based on jerk mode. Procedia Engineering 29: 957–961.
- Djati, N. S. G., 2011 Bidirectional chaotic synchronization of hindmarsh-rose neuron model. Applied Mathematical Sciences 5: 2685–2695.
- Genesio, R. and A. Tesi, 1992 Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28: 531–548.
- Lian, S., J. Sun, G. Liu, and Z. Wang, 2008 Efficient video encryption scheme based on advanced video coding. Multimedia Tools and Applications 38: 75–89.
- Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of the atmospheric sciences 20: 130–141.
- Lü, J., G. Chen, D. Cheng, and S. Celikovsky, 2002 Bridge the gap between the lorenz system and the chen system. International Journal of Bifurcation and Chaos 12: 2917– 2926.
- Munmuangsaen, B., B. Srisuchinwong, and J. C. Sprott, 2011 Generalization of the simplest autonomous chaotic system. Physics Letters A 375: 1445–1450.
- Nakajima, K. and Y. Sawada, 1980 Experimental studies on the weak coupling of oscillatory chemical reaction systems. The Journal of Chemical Physics 72: 2231–2234.
- Rössler, O. E., 1976 An equation for continuous chaos. Physics Letters A 57: 397–398.
- Sambas, A., W. Mada Sanjaya, M. Mamat, N. Karadimas, and O. Tacha, 2013 Numerical simulations in jerk circuit and it’s application in a secure communication system. In Recent Advances in Telecommunications and Circuit Design. WSEAS 17th International Conference on Communications Rhodes Island, Greece, pp. 190–196.
- Sambas, A., S. Vaidyanathan, M. Mamat, W. Sanjaya, and R. Prastio, 2016 Design, analysis of the genesio-tesi chaotic system and its electronic experimental implementation. International Journal of Control Theory and Applications 9: 141–149.
- Schot, S. H., 1978 Jerk: the time rate of change of acceleration. American Journal of Physics 46: 1090–1094.
- Shinbrot, T., C. Grebogi, J. Wisdom, and J. A. Yorke, 1992 Chaos in a double pendulum. American Journal of Physics 60: 491–499.
- Sprott, J., 1997 Some simple chaotic jerk functions. American Journal of Physics 65: 537–543.
- Sprott, J. C., 2010 Elegant chaos: algebraically simple chaotic flows.World Scientific. Umut, O. and S. Yasar, 2013 A simple jerky dynamics, genesio system. International journal of modern nonlinear theory and application 2: 60–68.
- Zang, X., S. Iqbal, Y. Zhu, X. Liu, and J. Zhao, 2016 Applications of chaotic dynamics in robotics. International Journal of Advanced Robotic Systems 13: 60.
Theoretical and Experimental Investigations of a Jerk Circuit with Two Parallel Diodes
Year 2020,
Volume: 2 Issue: 2, 52 - 57, 30.11.2020
Kom Guillaume Honoré
,
Nguemkoua Nguenjou Leopold Parfait
Cyrille Ainamon
,
Sifeu T. Kingni
Abstract
A Jerk circuit with two parallel diodes is proposed and analyzed in this paper. The system describing the proposed jerk circuit has two or no equilibrium points depending on the system parameters. The existence of Hopf bifurcation is established during the stability analysis of the equilibrium points. The proposed jerk circuit exhibits one scroll chaotic attractor and periodic attractors. An experimental study is presented to support theoretical investigations. The experimental results is shown consistency with numerical simulation results.
References
- Arneodo, A., P. Coullet, C. Tresser, et al., 1981 Possible new strange attractors with spiral structure. Communications in Mathematical Physics 79: 573–579.
- Bouali, S., A. Buscarino, L. Fortuna, M. Frasca, and L. Gambuzza, 2012 Emulating complex business cycles by using an electronic analogue. Nonlinear Analysis: RealWorld Applications 13: 2459–2465.
- Chen, G. and T. Ueta, 1999 Yet another chaotic attractor. International Journal of Bifurcation and chaos 9: 1465–1466.
- Chua, L. O., C. W. Wu, A. Huang, and G.-Q. Zhong, 1993 A universal circuit for studying and generating chaos. i.routes to chaos. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40: 732– 744.
- Chunxia, L., Y. Jie, X. Xiangchun, A. Limin, Q. Yan, et al., 2012 Research on the multi-scroll chaos generation based on jerk mode. Procedia Engineering 29: 957–961.
- Djati, N. S. G., 2011 Bidirectional chaotic synchronization of hindmarsh-rose neuron model. Applied Mathematical Sciences 5: 2685–2695.
- Genesio, R. and A. Tesi, 1992 Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28: 531–548.
- Lian, S., J. Sun, G. Liu, and Z. Wang, 2008 Efficient video encryption scheme based on advanced video coding. Multimedia Tools and Applications 38: 75–89.
- Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of the atmospheric sciences 20: 130–141.
- Lü, J., G. Chen, D. Cheng, and S. Celikovsky, 2002 Bridge the gap between the lorenz system and the chen system. International Journal of Bifurcation and Chaos 12: 2917– 2926.
- Munmuangsaen, B., B. Srisuchinwong, and J. C. Sprott, 2011 Generalization of the simplest autonomous chaotic system. Physics Letters A 375: 1445–1450.
- Nakajima, K. and Y. Sawada, 1980 Experimental studies on the weak coupling of oscillatory chemical reaction systems. The Journal of Chemical Physics 72: 2231–2234.
- Rössler, O. E., 1976 An equation for continuous chaos. Physics Letters A 57: 397–398.
- Sambas, A., W. Mada Sanjaya, M. Mamat, N. Karadimas, and O. Tacha, 2013 Numerical simulations in jerk circuit and it’s application in a secure communication system. In Recent Advances in Telecommunications and Circuit Design. WSEAS 17th International Conference on Communications Rhodes Island, Greece, pp. 190–196.
- Sambas, A., S. Vaidyanathan, M. Mamat, W. Sanjaya, and R. Prastio, 2016 Design, analysis of the genesio-tesi chaotic system and its electronic experimental implementation. International Journal of Control Theory and Applications 9: 141–149.
- Schot, S. H., 1978 Jerk: the time rate of change of acceleration. American Journal of Physics 46: 1090–1094.
- Shinbrot, T., C. Grebogi, J. Wisdom, and J. A. Yorke, 1992 Chaos in a double pendulum. American Journal of Physics 60: 491–499.
- Sprott, J., 1997 Some simple chaotic jerk functions. American Journal of Physics 65: 537–543.
- Sprott, J. C., 2010 Elegant chaos: algebraically simple chaotic flows.World Scientific. Umut, O. and S. Yasar, 2013 A simple jerky dynamics, genesio system. International journal of modern nonlinear theory and application 2: 60–68.
- Zang, X., S. Iqbal, Y. Zhu, X. Liu, and J. Zhao, 2016 Applications of chaotic dynamics in robotics. International Journal of Advanced Robotic Systems 13: 60.