Research Article
BibTex RIS Cite

Investigation of Factors Affecting on The Ignition Delay in Diesel Engine

Year 2023, Volume: 2 Issue: 1, 10 - 43, 30.04.2024

Abstract

Important points of combustion processes have to be known in order to provide fuel economics and decreasing air pollution that aggravates environment and engine noise emission. Combustion of diesel engine, which starts with injection, takes place in effect of numerous parameters as a whole and even continues partially in exhaust pipe, is complicated event. Combustion is investigated as three phases; ignition delay, rapid combustion and controlled combustion. Ignition delay is period of time from start of fuel injection to increasing exponentially of pressure or temperature, which represent, spontaneous combustion. There are effects of ignition delay on combustion and diesel knock so ignition delay effects engine performance, exhaust emissions and engine noise. If ignition delay is equal or longer than period of fuel evaporation, very high rapid increasing pressure originating from instantaneous combustion occurs and that is called diesel knock. One of the most important results of diesel knock is vibration of engine equipment and engine noise originates from engine equipment vibration. In this study, effects of important factors (compression ratio, fuel injection timing, intake air temperature, equivalence ratio) on the ignition delay have been investigated experimentally so that ignition delay can be changed under control. Furthermore, effect of main factors that affect ignition delay has been expressed with one stage half empiric equation. The correlation coefficient of the ignition delay values found with this equation and obtained from experiments was 0.9525. Ignition delay has been decreased with increasing compression ratio and intake air temperature, and increased with increasing fuel injection timing and excess air coefficient.

Project Number

BSE-075/131102

References

  • Abu-Elyazeed O.S.M. (2015). “On the ignition delay of two types of Castor oil bio-diesel using shock tube experiments”. Fuel, 144, 157–163.
  • Aldhaidhawi M. & Miron, L. & & Chiriac R. Badescu V. (2018). “Autoignition process in compression ignition engine fueled by diesel fuel and biodiesel with 20% rapeseed biofuel in diesel fuel”. J. of Energ. Eng.
  • Allen C.M. & Toulson E. & Hung L.S.D. & Schock H. & Miller D. & Lee T. (2011). “Ignition characteristics of diesel and canola biodiesel sprays in the low-temperature combustion regime”. Energy Fuels, 25 (7), 2896–2908.
  • Barituad, T.A. & Heinze, T.A. & Le Coz, J.F. (1994). “Spray and self–Ignition Visualization in a DI Diesel Engine”. SAE Technical Paper No: 940681.
  • Beerer D. & McDonell V. & Samuelsen S. & Angello L. (2009). “Interpretation of flow reactor based ignition delay measurements”. Proc. ASME Turbo Expo 2, 1011–1026.
  • Bolt, J.A. & Henein, N.A. (1970). “The effect of Some Engine Variables on Ignition Delay and Other Combustion Phenomena in a Diesel Engine”. The Institution of Mechanical Engineers.
  • Borat, O. (1953). “Diesel Motorlarında Tutuşma Evresine Kadarki Süreçlerin Teorisi”. Doktora tezi, Ren-Vestfalya Teknik Yüksek Okulu Aachen.
  • Borat, O. (1953). “Diesel Motorlarında Tutuşma Gecikmesi Hakkında Yeni Araştırmalar”. Doçentlik tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • Borat, O. & Balcı, M. & Sürmen, A. (1992). “Yanma Bilgisi”. Gazi Üni. Teknik Eğitim Fak. Yayınları, Ankara.
  • Borat, O. & Balcı, M. & Sürmen, A. (1995). “İçten Yanmalı Motorlar”, Gazi, Üni. Teknik Eğitim Fak. Yayınları, Ankara.
  • Borman, G.L. & Ragland, K.W. (1998). “Combustion Engineering”. Mc Graw Hill Book Company, San Francisco USA.
  • Brett, L. & Macnamara, J. & Musch, P. & Simmie, J.M. (2001). “Simulation of Methane Autoignition in a Rapid Compression Machine with Creviced Pistons”. Combustion and Flame, 124.
  • Burcat, A. & Radhakrishnan, K. (1985) “High Temperature Oxidation of Propane”. Combustion and Flame, 60.
  • Cavaliere, A. & Ciajolo, A. & D’anna, A. & Mercogliano, R. (1993). “Autoignition of n-Heptane and n-Tetradecane in Engine-Like Conditions”. Combustion and Flame, 93.
  • Chen, C. (2003). “Correlation of Ignition Delay with Fuel Composition and State For Application to Gas Turbine Combustion”, MSc Thesis, Clemson University Research Foundation South Carolina Institute for Energy Sciences, University of California.
  • Chigier, N. (1991). “Combustion Measurements”. Hemisphere Publishing Corporation, Washington, USA.
  • Ciezki, H.K. & Adomeit, G. (1993). “Shock-Tube Investigation of Self-ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions”. Combustion and Flame, 93.
  • Davis S.G. & Law, C.K. & Wang, H. (1999). “Propane Pyrolysis and Oxidation Kinetics in a Flow Reactor and Laminar Flames”. Combustion and Flame, 119.
  • Dimitriu, D.G. & Goettler, H.J. & Ziejewski, M. (1990). “Apparatus for the Measurement of Ignition Delay Times for Diesel Engine Fuels”. SAE Paper No: 901617.
  • El-Kasaby M. & Nemit-Allah M.A. (2013). “Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel”. Alex. Eng. J. 52 (2), 141–149
  • Erbakan N. (1953) “Diesel Motorlarında Tutuşma Evresine Kadarki Süreçlerin Teorisi” Doktora tezi, Ren-Vestfalya Teknik Yüksek Okulu, Aachen.
  • Erbakan N. (1953) “Diesel Motorlarında Tutuşma gecikmesi Hakkında Yeni Araştırmalar” Doçentlik tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • Fieweger, K. & Blumenthal, R. & Adomeit, G. (1997). “Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure”. Combustion and Flame, 109.
  • Gardiner, W.C. (1984). “Combustion Chemistry”. Springer-Verlog, Berlin.
  • Gutheil, E. (1993). “Numerical Investigation of the Ignition of Dilute Fuel Sprays Including Detailed Chemistry”. Combustion and Flame, 93.
  • Hamosfakidis, V. & Reitz, R.D. (2003). “Optimization of a Hydrocarbon Fuel Ignition Model for Two Single Component Surrogates of Diesel Fuel”. Combustion and Flame, 132.
  • Hoang V.N. & Thi L.D. (2015).” Experimental study of the ignition delay of diesel/biodiesel blends using a shock tube”. Biosyst. Eng. 134, 1–7.
  • Hoskin, D.H. & Edwards, C.F. & Siebers, D.L. (1992). “Ignition Delay Performance versus Composition of Model Fuels”. SAE Paper No: 920109.
  • Jaat N. & Khalid, A. & Andsaler A.R. & Sapit A. & Razali A. & Basharie M. (2017). “Effects of ambient temperature and injection pressure on biodiesel ignition delay”. J. Mech. Eng. Sci., 11 (2), 2723–2733.
  • Jamrozik A. (2017). “The effect of the alcohol content in the fuel mixture on the performance and emissions of a direct injection diesel engine fueled with diesel-methanol and diesel- ethanol blends”. Energy Convers. Manage. 148, 461–476.
  • Kang, S.H. & Baek, S.W. & Choi, J.H. (2001). “Autoignition of Sprays in a Cylindrical Combustor”. International Journal of Heat and Mass Transfer, 44.
  • Keunsoo K. & Wooyoung L. & Paxton W. & Eric M. & Jacob T. & Chol-Bum M. & Tonghun L. (2023). “Effects of the cetane number on chemical ignition delay”. Energy, 264, 126263.
  • Lapuerta M. & Hernandez J.J. & Fernandez-Rodriguez D. & Cova-Bonillo A. (2017). “Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant- volume combustion chamber”. Energy, 118, 613–621.
  • Leppard, W.R. (1991). “The Autoignition Chemistries of Octane-Enhancing Ethers and Cyclic Ethers: A Motored Engine Study”. SAE Technical Paper No:912313.
  • Lucian M. & Radu C. & Marek B. & Viorel B. (2021). “Ignition delay and its influence on the performance of a Diesel engine operating with different Diesel–biodiesel fuels”. Energy Reports, 7, Pages 5483-5494.
  • Minetti, R. & Carlier, M. & Rıbaucour, E. & Therssen, E. & Sochet, L.R. (1995). “A Rapid Compression Machine Investigation of Oxidation and Auto-Ignition of n-Heptane: Measurement and Modeling”. Combustion and Flame. 102.
  • Müller, U.C. & Peters, N. (1992). “Global Kinetics for n-Heptane Ignition at High Pressures”, 24. Symposium (international) on Combustion, Sydney, Australia.
  • Pinchon, P. (1989). “Three Dimensional Modeling of Combustion in a Prechamber Diesel Engine”. SAE Technical Paper No: 890666.
  • Qin, Z.; Yang, H. & William, C. & Gardiner, J.R. (2001). “Measurement and Modeling of Shock-Tube Ignition Delay for Propane”. Combustion and Flame, 124.
  • Rente, T. & Golovitchev, V.I. & Denbratt, I. (2001). “Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays”. SAE Technical Paper No: 2001-01-3687.
  • Sahetchian, K.A. & Blin, N. & Rigny, A. & Seydi, A. (1990). “The Oxidation of n- Butane and n-Heptane in a CFR Engine. Isomerization Reactions and Delay of Autoignition”. Combustion and Flame, 79.
  • Sahin, S.S. & Feng, G. & Heikal, M.R. & Goldfarb, I & Gol’dshteın, V. & Kuzmenko, G. (2001). “Thermal Ignition Analysis of a Monodisperse Sprays with Radiation”. Combustion And Flame, 125.
  • Shrestha K.P. & Eckart S. & Drost S. & Fritsche C. & Schießl R. & Seidel L. & Maas U. & Krause H. & Mauss F. (2022). “A comprehensive kinetic modeling of oxymethylene ethers (OMEn, n=1–3) oxidation - laminar flame speed and ignition delay time measurements”. Combustion and Flame, 246, 112426.
  • Soyhan, H.S. (2000). “Chemical Kinetic Modeling of Autoignition Under Conditions Relevant to Knock in Spark Ignition Engines”. Ph.D. Thesis, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • Taylor, C.F. (1985). “Detonation and Preignition, The Internal Combustion Engine in Theory and Practice”. The M.I.T. Press, London, England. Varatharajan, B. & Williams, F.A. (2001). “Chemical-Kinetic Description of High-Temperature Ignition and Detonation of Acetylene- Oxygen-Diluent Systems”. Combustion and Flame, 125.
  • Warnatz, J. & Maas, U. & Dibble, R.W., (2001). “Combustion”. Springer, Berlin.
  • Wilk, R.D. & Cernansky, N.P. (1989). “Propene Oxidation at Low and Intermediate Temperatures: A Detailed Chemical Kinetic Study”. Combustion and Flame, 77.
  • Yetkin, A. (1975). “Homojen Olmayan Ortamlarda Tutuşmaya Hazırlık Döneminde Reaksiyon Ürünlerinin Konsantrasyonlarının Kinetik Açıdan İncelenmesi”. Doktora Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü.

Dizel Motorlarında Tutuşma Gecikmesini Etkileyen Faktörlerin İncelenmesi

Year 2023, Volume: 2 Issue: 1, 10 - 43, 30.04.2024

Abstract

İçten yanmalı motorlarda ekonomikliğin sağlanması, çevre sağlığı yönünden problem oluşturan hava kirliliğinin ve motor gürültüsünün azaltılması için yanma olayının önemli noktaları bilinmelidir. Dizel motorlarında yanma olayı püskürtme ile başlayıp, pek çok sayıda parametrenin topluca etkisi altında cereyan eden ve gerçekte egzoz içinde bile kısmen devam eden karmaşık bir olaydır. Yanma olayı üç ayrı safha halinde incelenmektedir. Bunlar tutuşma gecikmesi, ani yanma ve kumandalı (kontrollü) yanma safhalarıdır. Tutuşma gecikmesi yakıt püskürtmenin başladığı andan silindir basıncının yüksek hızda arttığı ana kadar geçen süredir. Tutuşma gecikmesi süreci; yanmayı, dizel vuruntusunu ve buna bağlı olarak motorun performansını ve gürültüsünü, bununla birlikte is teşekkülü gibi yanmanın daha sonraki safhalarını da etkilemektedir. Tutuşma gecikmesinin buharlaşma süresinden daha uzun olması durumunda, buharlaşan yakıt ve hava karışımı aniden yanarak yanma hızı ve buna bağlı olarak basınç yükselme hızı çok yüksek olur. Bu oluşum, dizel vuruntusu olarak adlandırılır. Dizel vuruntusunun en önemli sonuçlarında birisi motor parçalarında oluşan titreşimler ve titreşimlerden mütevellit motor gürültüsüdür. Bu çalışmada; tutuşma gecikmesini etkileyen önemli faktörlerin (sıkıştırma oranı, püskürtme avansı, emme havası sıcaklığı, hava fazlalık katsayısı) tutuşma gecikmesi üzerindeki etkileri deneysel olarak belirlenerek tutuşma gecikmesinin kontrollü değiştirilmesi sağlanmıştır. Ayrıca deney sonuçlarından yararlanılarak tutuşma gecikmesini etkileyen ana faktörlerin etkileri tek safhalı yarı ampirik denklemle ifade edilmiştir. Bu denklem ile bulunan ve deneylerden elde edilen tutuşma gecikmesi değerlerinin korelasyon katsayısı 0,9525 bulunmuştur. Tutuşma gecikmesi sıkıştırma oranı ve emme havası sıcaklığının artmasıyla azalmış, püskürtme avansı ve hava fazlalık katsayısının artmasıyla ise artmıştır.

Supporting Institution

Bu çalışma Marmara Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından BSE-075/131102 proje numarası ile desteklenmiştir.

Project Number

BSE-075/131102

References

  • Abu-Elyazeed O.S.M. (2015). “On the ignition delay of two types of Castor oil bio-diesel using shock tube experiments”. Fuel, 144, 157–163.
  • Aldhaidhawi M. & Miron, L. & & Chiriac R. Badescu V. (2018). “Autoignition process in compression ignition engine fueled by diesel fuel and biodiesel with 20% rapeseed biofuel in diesel fuel”. J. of Energ. Eng.
  • Allen C.M. & Toulson E. & Hung L.S.D. & Schock H. & Miller D. & Lee T. (2011). “Ignition characteristics of diesel and canola biodiesel sprays in the low-temperature combustion regime”. Energy Fuels, 25 (7), 2896–2908.
  • Barituad, T.A. & Heinze, T.A. & Le Coz, J.F. (1994). “Spray and self–Ignition Visualization in a DI Diesel Engine”. SAE Technical Paper No: 940681.
  • Beerer D. & McDonell V. & Samuelsen S. & Angello L. (2009). “Interpretation of flow reactor based ignition delay measurements”. Proc. ASME Turbo Expo 2, 1011–1026.
  • Bolt, J.A. & Henein, N.A. (1970). “The effect of Some Engine Variables on Ignition Delay and Other Combustion Phenomena in a Diesel Engine”. The Institution of Mechanical Engineers.
  • Borat, O. (1953). “Diesel Motorlarında Tutuşma Evresine Kadarki Süreçlerin Teorisi”. Doktora tezi, Ren-Vestfalya Teknik Yüksek Okulu Aachen.
  • Borat, O. (1953). “Diesel Motorlarında Tutuşma Gecikmesi Hakkında Yeni Araştırmalar”. Doçentlik tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • Borat, O. & Balcı, M. & Sürmen, A. (1992). “Yanma Bilgisi”. Gazi Üni. Teknik Eğitim Fak. Yayınları, Ankara.
  • Borat, O. & Balcı, M. & Sürmen, A. (1995). “İçten Yanmalı Motorlar”, Gazi, Üni. Teknik Eğitim Fak. Yayınları, Ankara.
  • Borman, G.L. & Ragland, K.W. (1998). “Combustion Engineering”. Mc Graw Hill Book Company, San Francisco USA.
  • Brett, L. & Macnamara, J. & Musch, P. & Simmie, J.M. (2001). “Simulation of Methane Autoignition in a Rapid Compression Machine with Creviced Pistons”. Combustion and Flame, 124.
  • Burcat, A. & Radhakrishnan, K. (1985) “High Temperature Oxidation of Propane”. Combustion and Flame, 60.
  • Cavaliere, A. & Ciajolo, A. & D’anna, A. & Mercogliano, R. (1993). “Autoignition of n-Heptane and n-Tetradecane in Engine-Like Conditions”. Combustion and Flame, 93.
  • Chen, C. (2003). “Correlation of Ignition Delay with Fuel Composition and State For Application to Gas Turbine Combustion”, MSc Thesis, Clemson University Research Foundation South Carolina Institute for Energy Sciences, University of California.
  • Chigier, N. (1991). “Combustion Measurements”. Hemisphere Publishing Corporation, Washington, USA.
  • Ciezki, H.K. & Adomeit, G. (1993). “Shock-Tube Investigation of Self-ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions”. Combustion and Flame, 93.
  • Davis S.G. & Law, C.K. & Wang, H. (1999). “Propane Pyrolysis and Oxidation Kinetics in a Flow Reactor and Laminar Flames”. Combustion and Flame, 119.
  • Dimitriu, D.G. & Goettler, H.J. & Ziejewski, M. (1990). “Apparatus for the Measurement of Ignition Delay Times for Diesel Engine Fuels”. SAE Paper No: 901617.
  • El-Kasaby M. & Nemit-Allah M.A. (2013). “Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel”. Alex. Eng. J. 52 (2), 141–149
  • Erbakan N. (1953) “Diesel Motorlarında Tutuşma Evresine Kadarki Süreçlerin Teorisi” Doktora tezi, Ren-Vestfalya Teknik Yüksek Okulu, Aachen.
  • Erbakan N. (1953) “Diesel Motorlarında Tutuşma gecikmesi Hakkında Yeni Araştırmalar” Doçentlik tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • Fieweger, K. & Blumenthal, R. & Adomeit, G. (1997). “Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure”. Combustion and Flame, 109.
  • Gardiner, W.C. (1984). “Combustion Chemistry”. Springer-Verlog, Berlin.
  • Gutheil, E. (1993). “Numerical Investigation of the Ignition of Dilute Fuel Sprays Including Detailed Chemistry”. Combustion and Flame, 93.
  • Hamosfakidis, V. & Reitz, R.D. (2003). “Optimization of a Hydrocarbon Fuel Ignition Model for Two Single Component Surrogates of Diesel Fuel”. Combustion and Flame, 132.
  • Hoang V.N. & Thi L.D. (2015).” Experimental study of the ignition delay of diesel/biodiesel blends using a shock tube”. Biosyst. Eng. 134, 1–7.
  • Hoskin, D.H. & Edwards, C.F. & Siebers, D.L. (1992). “Ignition Delay Performance versus Composition of Model Fuels”. SAE Paper No: 920109.
  • Jaat N. & Khalid, A. & Andsaler A.R. & Sapit A. & Razali A. & Basharie M. (2017). “Effects of ambient temperature and injection pressure on biodiesel ignition delay”. J. Mech. Eng. Sci., 11 (2), 2723–2733.
  • Jamrozik A. (2017). “The effect of the alcohol content in the fuel mixture on the performance and emissions of a direct injection diesel engine fueled with diesel-methanol and diesel- ethanol blends”. Energy Convers. Manage. 148, 461–476.
  • Kang, S.H. & Baek, S.W. & Choi, J.H. (2001). “Autoignition of Sprays in a Cylindrical Combustor”. International Journal of Heat and Mass Transfer, 44.
  • Keunsoo K. & Wooyoung L. & Paxton W. & Eric M. & Jacob T. & Chol-Bum M. & Tonghun L. (2023). “Effects of the cetane number on chemical ignition delay”. Energy, 264, 126263.
  • Lapuerta M. & Hernandez J.J. & Fernandez-Rodriguez D. & Cova-Bonillo A. (2017). “Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant- volume combustion chamber”. Energy, 118, 613–621.
  • Leppard, W.R. (1991). “The Autoignition Chemistries of Octane-Enhancing Ethers and Cyclic Ethers: A Motored Engine Study”. SAE Technical Paper No:912313.
  • Lucian M. & Radu C. & Marek B. & Viorel B. (2021). “Ignition delay and its influence on the performance of a Diesel engine operating with different Diesel–biodiesel fuels”. Energy Reports, 7, Pages 5483-5494.
  • Minetti, R. & Carlier, M. & Rıbaucour, E. & Therssen, E. & Sochet, L.R. (1995). “A Rapid Compression Machine Investigation of Oxidation and Auto-Ignition of n-Heptane: Measurement and Modeling”. Combustion and Flame. 102.
  • Müller, U.C. & Peters, N. (1992). “Global Kinetics for n-Heptane Ignition at High Pressures”, 24. Symposium (international) on Combustion, Sydney, Australia.
  • Pinchon, P. (1989). “Three Dimensional Modeling of Combustion in a Prechamber Diesel Engine”. SAE Technical Paper No: 890666.
  • Qin, Z.; Yang, H. & William, C. & Gardiner, J.R. (2001). “Measurement and Modeling of Shock-Tube Ignition Delay for Propane”. Combustion and Flame, 124.
  • Rente, T. & Golovitchev, V.I. & Denbratt, I. (2001). “Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays”. SAE Technical Paper No: 2001-01-3687.
  • Sahetchian, K.A. & Blin, N. & Rigny, A. & Seydi, A. (1990). “The Oxidation of n- Butane and n-Heptane in a CFR Engine. Isomerization Reactions and Delay of Autoignition”. Combustion and Flame, 79.
  • Sahin, S.S. & Feng, G. & Heikal, M.R. & Goldfarb, I & Gol’dshteın, V. & Kuzmenko, G. (2001). “Thermal Ignition Analysis of a Monodisperse Sprays with Radiation”. Combustion And Flame, 125.
  • Shrestha K.P. & Eckart S. & Drost S. & Fritsche C. & Schießl R. & Seidel L. & Maas U. & Krause H. & Mauss F. (2022). “A comprehensive kinetic modeling of oxymethylene ethers (OMEn, n=1–3) oxidation - laminar flame speed and ignition delay time measurements”. Combustion and Flame, 246, 112426.
  • Soyhan, H.S. (2000). “Chemical Kinetic Modeling of Autoignition Under Conditions Relevant to Knock in Spark Ignition Engines”. Ph.D. Thesis, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • Taylor, C.F. (1985). “Detonation and Preignition, The Internal Combustion Engine in Theory and Practice”. The M.I.T. Press, London, England. Varatharajan, B. & Williams, F.A. (2001). “Chemical-Kinetic Description of High-Temperature Ignition and Detonation of Acetylene- Oxygen-Diluent Systems”. Combustion and Flame, 125.
  • Warnatz, J. & Maas, U. & Dibble, R.W., (2001). “Combustion”. Springer, Berlin.
  • Wilk, R.D. & Cernansky, N.P. (1989). “Propene Oxidation at Low and Intermediate Temperatures: A Detailed Chemical Kinetic Study”. Combustion and Flame, 77.
  • Yetkin, A. (1975). “Homojen Olmayan Ortamlarda Tutuşmaya Hazırlık Döneminde Reaksiyon Ürünlerinin Konsantrasyonlarının Kinetik Açıdan İncelenmesi”. Doktora Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Internal Combustion Engines, Automotive Combustion and Fuel Engineering
Journal Section Research Article
Authors

Metin Gümüş 0000-0002-0945-6827

Ahmet Korhan Binark 0000-0001-7504-7127

Project Number BSE-075/131102
Publication Date April 30, 2024
Submission Date January 17, 2024
Acceptance Date April 4, 2024
Published in Issue Year 2023 Volume: 2 Issue: 1

Cite

APA Gümüş, M., & Binark, A. K. (2024). Dizel Motorlarında Tutuşma Gecikmesini Etkileyen Faktörlerin İncelenmesi. Cihannüma Teknoloji Fen Ve Mühendislik Bilimleri Akademi Dergisi, 2(1), 10-43.