Research Article
BibTex RIS Cite

Quantum Chemical Studies of Sensitizers Designed for Dye-Sensitive Solar Cells

Year 2023, Volume: 10 Issue: 2, 162 - 182, 30.12.2023
https://doi.org/10.48138/cjo.1404252

Abstract

In this study, two different organic dyes with a D-π1-R-π2-A structure were designed from the reference dye E0 with a D-π1-π2-A structure (E3-E4). By adding 2,3-dicyanopyrirazinophenanthrene between the π-bridges on the reference dye E0 and changing the π-bridge, dyes designed to examine the photovoltaic features for use in dye-sensitized solar cell (DSSC) devices were obtained. Various properties of the designed dyes, such as their geometrical structures, absorption spectra, nonlinear optical properties (NLOs), energy levels, boundary molecular orbitals, and some photovoltaic and chemical reactivity parameters, were investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods to improve the performance of Dye-Sensitized Solar Cells (DSSCs). The calculated theoretical results concluded that E4 of the designed dyes can have a high short-circuit current and better power conversion energy (PCE) compared with E0. These results indicate that adding different auxiliary ligands and modifying the π-bridges can effectively improve the photovoltaic performance of the system.

Ethical Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  • Abdullah, M. I., Janjua, M. R. S. A., Mahmood, A., Ali, S., & Ali, M. (2013). Quantum chemical designing of efficient sensitizers for dye sensitized solar cells. Bulletin of the Korean Chemical Society, 34(7), 2093-2098.
  • Atkins, P. (2010). Shriver and Atkins' inorganic chemistry. Oxford University Press, USA.
  • Becke, A. (1993). Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys., 98: 5648-5652. In.
  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of chemical physics, 98(2), 1372-1377.
  • Bomben, P. G., Robson, K. C., Koivisto, B. D., & Berlinguette, C. P. (2012). Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coordination Chemistry Reviews, 256(15-16), 1438-1450.
  • Bourass, M., Benjelloun, A. T., Benzakour, M., Mcharfi, M., Hamidi, M., Bouzzine, S., Serein-Spirau, F., Jarrosson, T., Lère-Porte, J., & Sotiropoulos, J.-M. (2016). The computational study of the electronic and optoelectronics properties of new materials based on thienopyrazine for application in dye solar cells. Journal of Materials and Environmental Science, 7(3), 700-712.
  • Britel, O., Fitri, A., Benjelloun, A. T., Benzakour, M., & Mcharfi, M. (2023a). Carbazole based D-πi-π-A dyes for DSSC applications: DFT/TDDFT study of the influence of πi-spacers on the photovoltaic performance. Chemical Physics, 565, 111738.
  • Britel, O., Fitri, A., Benjelloun, A. T., Benzakour, M., & Mcharfi, M. (2023b). New carbazole-based dyes for efficient dye-sensitized solar cells: a DFT insight. Structural Chemistry, 1-16.
  • Caricato, M., Frisch, M. J., Hiscocks, J., & Frisch, M. J. (2009). Gaussian 09: IOps Reference. Gaussian Wallingford, CT, USA.
  • Chaitanya, K., Ju, X.-H., & Heron, B. M. (2014). Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC advances, 4(51), 26621-26634.
  • Dutta, R., Ahmed, S., & Kalita, D. J. (2020). Theoretical design of new triphenylamine based dyes for the fabrication of DSSCs: A DFT/TD-DFT study. Materials Today Communications, 22, 100731.
  • Fitri, A., Benjelloun, A. T., Benzakour, M., Mcharfi, M., Hamidi, M., & Bouachrine, M. (2014a). Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, 232-238.
  • Fitri, A., Benjelloun, A. T., Benzakour, M., Mcharfi, M., Hamidi, M., & Bouachrine, M. (2014b). Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124, 646-654.
  • Grätzel, M. (2001). Photoelectrochemical cells. nature, 414(6861), 338-344.
  • Hamann, T. W., Jensen, R. A., Martinson, A. B., Van Ryswyk, H., & Hupp, J. T. (2008). Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science, 1(1), 66-78.
  • He, L.-J., Wang, J., Chen, J., Jia, R., & Zhang, H.-X. (2017). The effect of relative position of the π-spacer center between donor and acceptor on the overall performance of D-π-A dye: a theoretical study with organic dye. Electrochimica Acta, 241, 440-448.
  • Higashino, T., & Imahori, H. (2015). Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton transactions, 44(2), 448-463.
  • Ho, P.-Y., Wang, Y., Yiu, S.-C., Kwok, Y.-Y., Siu, C.-H., Ho, C.-L., Lee, L. T. L., & Chen, T. (2021). Photophysical characteristics and photosensitizing abilities of thieno [3, 2-b] thiophene-Based photosensitizers for photovoltaic and photocatalytic applications. Journal of Photochemistry and Photobiology A: Chemistry, 406, 112979.
  • Huang, R.-Y., Tsai, W.-H., Wen, J.-J., Chang, Y. J., & Chow, T. J. (2020). Spiro [fluorene-9, 9′-phenanthren]-10′-one as auxiliary acceptor of DA-π-A dyes for dye-sensitized solar cells under one sun and indoor light. Journal of Power Sources, 458, 228063.
  • Ibrahim, M. M., El‐Shafai, N. M., El‐Mehasseb, I. M., Abdou, S. N., & El‐Sheshtawy, H. S. (2021). Tuning optical properties of triphenylamine‐pyrrole by alkyl‐substituted thiobarbituric acid for dye‐sensitized solar cell. International Journal of Energy Research, 45(10), 14804-14812.
  • Kumar, A., Richhariya, G., & Sharma, A. (2015). Solar photovoltaic technology and its sustainability. Energy sustainability through green energy, 3-25.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.
  • Lee, W., Roh, S.-J., Hyung, K.-H., Park, J., Lee, S.-H., & Han, S.-H. (2009). Photoelectrochemically polymerized polythiophene layers on ruthenium photosensitizers in dye-sensitized solar cells and their beneficial effects. Solar Energy, 83(5), 690-695.
  • Li, Y., Li, X., & Xu, Y. (2020a). A rational design of excellent light-absorbing dyes with different N-substituents at the phenothiazine for high efficiency solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 234, 118241.
  • Li, Y., Li, X., & Xu, Y. (2020b). Theoretical screening of high-efficiency sensitizers with D-π-A framework for DSSCs by altering promising donor group. Solar Energy, 196, 146-156.
  • Li, Y., Liu, J., Liu, D., Li, X., & Xu, Y. (2019). DA-π-A based organic dyes for efficient DSSCs: A theoretical study on the role of π-spacer. Computational Materials Science, 161, 163-176.
  • Liang, M., & Chen, J. (2013). Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 42(8), 3453-3488.
  • Lu, T.-F., Li, W., Chen, J., Tang, J., Bai, F.-Q., & Zhang, H.-X. (2018). Promising pyridinium ylide based anchors towards high-efficiency dyes for dye-sensitized solar cells applications: Insights from theoretical investigations. Electrochimica Acta, 283, 1798-1805.
  • Mandal, S., Kandregula, G. R., & Ramanujam, K. (2020). Replacing aromatic π-system with cycloalkyl in triphenylamine dyes to impact intramolecular charge transfer in dyes pertaining to dye-sensitized solar cells application. Journal of Photochemistry and Photobiology A: Chemistry, 403, 112862.
  • Marcus, R. A. (2020). Electron transfer reactions in chemistry. Theory and experiment. In Protein electron transfer (pp. 249-272). Garland Science.
  • Marlina, L. A., Haryadi, W., Daengngern, R., & Pranowo, H. D. (2022). Molecular design of benzo [c][1, 2, 5] thiadiazole or thieno [3, 4-d] pyridazine-based auxiliary acceptors through different anchoring groups in D-π-AA framework: A DFT/TD-DFT study. Journal of Molecular Graphics and Modelling, 113, 108148.
  • Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K., & Grätzel, M. (2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry, 6(3), 242-247.
  • Mersal, G. A., Toghan, A., Yahia, I. S., & El‐Sheshtawy, H. S. (2021). Pyrrole/thiophene π‐bridged two triphenylamine electron donor and substituted thiobarbituric electron acceptor for D‐π‐A‐D‐featured DSSC applications. Journal of the Chinese Chemical Society, 68(10), 1842-1851.
  • Muthu, S., & Maheswari, J. U. (2012). Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H, UV) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 4-[(4-aminobenzene) sulfonyl] aniline by ab initio HF and density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 92, 154-163.
  • Noh, H. J., Ji, J.-M., Hwang, S. P., Kim, C. H., & Kim, H. K. (2021). D-π-A-structured organic sensitizers with π-extended auxiliary acceptor units for high-performance dye-sensitized solar cells. Dyes and Pigments, 195, 109681.
  • O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 353(6346), 737-740.
  • Patil, D. S., Avhad, K. C., & Sekar, N. (2018). Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties–DFT approach. Computational and Theoretical Chemistry, 1138, 75-83.
  • Pounraj, P., Mohankumar, V., Pandian, M. S., & Ramasamy, P. (2018). Donor functionalized quinoline based organic sensitizers for dye sensitized solar cell (DSSC) applications: DFT and TD-DFT investigations. Journal of Molecular Modeling, 24, 1-23.
  • Raftani, M., Abram, T., Azaid, A., Kacimi, R., Bennani, M., & Bouachrine, M. (2023). New organic dyes with low bandgap based on heterocyclic compounds for dye-sensitized solar cells applications. Biointerface Research in Applied Chemistry, 13.
  • Roohi, H., & Mohtamadifar, N. (2022). The role of the donor group and electron-accepting substitutions inserted in π-linkers in tuning the optoelectronic properties of D–π–A dye-sensitized solar cells: a DFT/TDDFT study. RSC advances, 12(18), 11557-11573.
  • Roy, J. K., Kar, S., & Leszczynski, J. (2018). Insight into the optoelectronic properties of designed solar cells efficient tetrahydroquinoline dye-sensitizers on TiO2 (101) surface: first principles approach. Scientific Reports, 8(1), 10997.
  • Saad Ebied, M., Dongol, M., Ibrahim, M., Nassary, M., Elnobi, S., & Abuelwafa, A. A. (2022). Effect of carboxylic acid and cyanoacrylic acid as anchoring groups on Coumarin 6 dye for dye-sensitized solar cells: DFT and TD-DFT study. Structural Chemistry, 33(6), 1921-1933.
  • Singh, M., & Kanaparthi, R. K. (2022). Theoretical exploration of 1, 3-Indanedione as electron acceptor-cum-anchoring group for designing sensitizers towards DSSC applications. Solar Energy, 237, 456-469.
  • Tan, L.-L., Huang, J.-F., Shen, Y., Xiao, L.-M., Liu, J.-M., Kuang, D.-B., & Su, C.-Y. (2014). Highly efficient and stable organic sensitizers with duplex starburst triphenylamine and carbazole donors for liquid and quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2(24), 8988-8994.
  • Tripathi, A., Kumar, V., & Chetti, P. (2022). Impact of internal (donor/acceptor) moieties and π-spacer in triphenylamine-based dyes for DSSCs. Journal of Photochemistry and Photobiology A: Chemistry, 426, 113738. Turhan, Z. Ş. (2021). Fenazin Tabanlı Bileşiklerin OLED ve TADF Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 11(4), 2926-2936.
  • Ugurlu, G., & Beytur, M. (2020). Theoretical studies on the structural, vibrational, conformational analysis and nonlinear optic property of 4-(methoxycarbonyl)-phenylboronic acid. INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 59(10), 1504-1512.
  • Uğurlu, G. (2020). Ortorombik metaborik asit molekülünün moleküler yapısı ve elektronik özellikleri üzerindeki konformasyonel etkinin teorik olarak incelenmesi. Journal of Boron, 5(2), 91-99.
  • Ulaş, Y. (2020). Experimental and Theoretical Studies of 2-(naphthalen-1-yl (piperidin-1-yl) methyl) phenol Compound. J. Chem. Soc. Pak, 42(6), 818-826.
  • Ulaş, Y. (2021). Investigation of the relationship between the substituent and nonlinear optical properties in 2-(Phenyl ((4-Vinylphenyl) Amino) Methyl) phenol derivative compounds by DFT method. Journal of the Chemical Society of Pakistan, 43(3), 271-277.
  • Wazzan, N., & Irfan, A. (2020). Promising architectures modifying the D-π-A architecture of 2, 3-dipentyldithieno [3, 2-f: 2′, 3′-h] quinoxaline-based dye as efficient sensitizers in dye-sensitized solar cells: a DFT study. Materials Science in Semiconductor Processing, 120, 105260.
  • Xu, Z., Li, Y., Zhang, W., Yuan, S., Hao, L., Xu, T., & Lu, X. (2019). DFT/TD-DFT study of novel T shaped phenothiazine-based organic dyes for dye-sensitized solar cells applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 212, 272-280.
  • Yang, Z., Liu, C., Li, K., Cole, J. M., Shao, C., & Cao, D. (2018). Rational design of dithienopicenocarbazole-based dyes and a prediction of their energy-conversion efficiency characteristics for dye-sensitized solar cells. ACS Applied Energy Materials, 1(4), 1435-1444.
  • Zhang, C.-R., Liu, L., Zhe, J.-W., Jin, N.-Z., Ma, Y., Yuan, L.-H., Zhang, M.-L., Wu, Y.-Z., Liu, Z.-J., & Chen, H.-S. (2013). The role of the conjugate bridge in electronic structures and related properties of tetrahydroquinoline for dye sensitized solar cells. International journal of molecular sciences, 14(3), 5461-5481.
  • Zhang, R., Du, B., Sun, G., & Sun, Y. (2010). Experimental and theoretical studies on o-, m-and p-chlorobenzylideneaminoantipyrines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(3), 1115-1124.
  • Zhang, Z., Hu, W., He, R., Shen, W., & Li, M. (2017). The influence of inserted thiophene into the (π-A'-π)-bridge on photovoltaic performances of dye-sensitized solar cells. Materials Chemistry and Physics, 191, 121-128.

Boyaya Duyarlı Güneş Pilleri için Tasarlanan Duyarlaştırıcıların Kuantum Kimyasal Çalışmaları

Year 2023, Volume: 10 Issue: 2, 162 - 182, 30.12.2023
https://doi.org/10.48138/cjo.1404252

Abstract

Bu çalışmada, D-π1-π2-A yapısına (E3-E4) sahip E0 referans boyasından D-π1-R-π2-A yapısına sahip iki farklı organik boya tasarlandı. Referans boya E0 üzerindeki π köprüleri arasına 2,3-disyanopirirazinofenantren eklenerek ve π köprüsü değiştirilerek, boyaya duyarlı güneş pili (DSSC) cihazlarında kullanılmak üzere fotovoltaik özellikleri incelemek üzere tasarlanan boyalar elde edildi. Tasarlanan boyaların geometrik yapıları, absorpsiyon spektrumları, Doğrusal Olmayan Optik özellikleri (NLO'lar), enerji seviyeleri, sınır moleküler yörüngeleri ve bazı fotovoltaik ve kimyasal reaktivite parametreleri gibi çeşitli özellikleri, Boyaya Duyarlı Güneş Pillerinin (DSSC'ler) performansını artırmak için Yoğunluk Fonksiyonel Teorisi (DFT) ve zaman bağımlı DFT (TD-DFT) yöntemleri kullanılarak araştırıldı. Hesaplanan teorik sonuçlar, tasarlanan boyalardan E4'ün, E0'a kıyasla yüksek kısa devre akımına ve daha iyi güç dönüşüm enerjisine (PCE) sahip olabileceği sonucuna varıldı. Bu sonuçlar, farklı yardımcı ligandların eklenmesinin ve π-köprülerinin değiştirilmesinin sistemin fotovoltaik performansını etkili bir şekilde artırabileceğini göstermektedir.

References

  • Abdullah, M. I., Janjua, M. R. S. A., Mahmood, A., Ali, S., & Ali, M. (2013). Quantum chemical designing of efficient sensitizers for dye sensitized solar cells. Bulletin of the Korean Chemical Society, 34(7), 2093-2098.
  • Atkins, P. (2010). Shriver and Atkins' inorganic chemistry. Oxford University Press, USA.
  • Becke, A. (1993). Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys., 98: 5648-5652. In.
  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of chemical physics, 98(2), 1372-1377.
  • Bomben, P. G., Robson, K. C., Koivisto, B. D., & Berlinguette, C. P. (2012). Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coordination Chemistry Reviews, 256(15-16), 1438-1450.
  • Bourass, M., Benjelloun, A. T., Benzakour, M., Mcharfi, M., Hamidi, M., Bouzzine, S., Serein-Spirau, F., Jarrosson, T., Lère-Porte, J., & Sotiropoulos, J.-M. (2016). The computational study of the electronic and optoelectronics properties of new materials based on thienopyrazine for application in dye solar cells. Journal of Materials and Environmental Science, 7(3), 700-712.
  • Britel, O., Fitri, A., Benjelloun, A. T., Benzakour, M., & Mcharfi, M. (2023a). Carbazole based D-πi-π-A dyes for DSSC applications: DFT/TDDFT study of the influence of πi-spacers on the photovoltaic performance. Chemical Physics, 565, 111738.
  • Britel, O., Fitri, A., Benjelloun, A. T., Benzakour, M., & Mcharfi, M. (2023b). New carbazole-based dyes for efficient dye-sensitized solar cells: a DFT insight. Structural Chemistry, 1-16.
  • Caricato, M., Frisch, M. J., Hiscocks, J., & Frisch, M. J. (2009). Gaussian 09: IOps Reference. Gaussian Wallingford, CT, USA.
  • Chaitanya, K., Ju, X.-H., & Heron, B. M. (2014). Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC advances, 4(51), 26621-26634.
  • Dutta, R., Ahmed, S., & Kalita, D. J. (2020). Theoretical design of new triphenylamine based dyes for the fabrication of DSSCs: A DFT/TD-DFT study. Materials Today Communications, 22, 100731.
  • Fitri, A., Benjelloun, A. T., Benzakour, M., Mcharfi, M., Hamidi, M., & Bouachrine, M. (2014a). Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, 232-238.
  • Fitri, A., Benjelloun, A. T., Benzakour, M., Mcharfi, M., Hamidi, M., & Bouachrine, M. (2014b). Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124, 646-654.
  • Grätzel, M. (2001). Photoelectrochemical cells. nature, 414(6861), 338-344.
  • Hamann, T. W., Jensen, R. A., Martinson, A. B., Van Ryswyk, H., & Hupp, J. T. (2008). Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science, 1(1), 66-78.
  • He, L.-J., Wang, J., Chen, J., Jia, R., & Zhang, H.-X. (2017). The effect of relative position of the π-spacer center between donor and acceptor on the overall performance of D-π-A dye: a theoretical study with organic dye. Electrochimica Acta, 241, 440-448.
  • Higashino, T., & Imahori, H. (2015). Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton transactions, 44(2), 448-463.
  • Ho, P.-Y., Wang, Y., Yiu, S.-C., Kwok, Y.-Y., Siu, C.-H., Ho, C.-L., Lee, L. T. L., & Chen, T. (2021). Photophysical characteristics and photosensitizing abilities of thieno [3, 2-b] thiophene-Based photosensitizers for photovoltaic and photocatalytic applications. Journal of Photochemistry and Photobiology A: Chemistry, 406, 112979.
  • Huang, R.-Y., Tsai, W.-H., Wen, J.-J., Chang, Y. J., & Chow, T. J. (2020). Spiro [fluorene-9, 9′-phenanthren]-10′-one as auxiliary acceptor of DA-π-A dyes for dye-sensitized solar cells under one sun and indoor light. Journal of Power Sources, 458, 228063.
  • Ibrahim, M. M., El‐Shafai, N. M., El‐Mehasseb, I. M., Abdou, S. N., & El‐Sheshtawy, H. S. (2021). Tuning optical properties of triphenylamine‐pyrrole by alkyl‐substituted thiobarbituric acid for dye‐sensitized solar cell. International Journal of Energy Research, 45(10), 14804-14812.
  • Kumar, A., Richhariya, G., & Sharma, A. (2015). Solar photovoltaic technology and its sustainability. Energy sustainability through green energy, 3-25.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.
  • Lee, W., Roh, S.-J., Hyung, K.-H., Park, J., Lee, S.-H., & Han, S.-H. (2009). Photoelectrochemically polymerized polythiophene layers on ruthenium photosensitizers in dye-sensitized solar cells and their beneficial effects. Solar Energy, 83(5), 690-695.
  • Li, Y., Li, X., & Xu, Y. (2020a). A rational design of excellent light-absorbing dyes with different N-substituents at the phenothiazine for high efficiency solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 234, 118241.
  • Li, Y., Li, X., & Xu, Y. (2020b). Theoretical screening of high-efficiency sensitizers with D-π-A framework for DSSCs by altering promising donor group. Solar Energy, 196, 146-156.
  • Li, Y., Liu, J., Liu, D., Li, X., & Xu, Y. (2019). DA-π-A based organic dyes for efficient DSSCs: A theoretical study on the role of π-spacer. Computational Materials Science, 161, 163-176.
  • Liang, M., & Chen, J. (2013). Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 42(8), 3453-3488.
  • Lu, T.-F., Li, W., Chen, J., Tang, J., Bai, F.-Q., & Zhang, H.-X. (2018). Promising pyridinium ylide based anchors towards high-efficiency dyes for dye-sensitized solar cells applications: Insights from theoretical investigations. Electrochimica Acta, 283, 1798-1805.
  • Mandal, S., Kandregula, G. R., & Ramanujam, K. (2020). Replacing aromatic π-system with cycloalkyl in triphenylamine dyes to impact intramolecular charge transfer in dyes pertaining to dye-sensitized solar cells application. Journal of Photochemistry and Photobiology A: Chemistry, 403, 112862.
  • Marcus, R. A. (2020). Electron transfer reactions in chemistry. Theory and experiment. In Protein electron transfer (pp. 249-272). Garland Science.
  • Marlina, L. A., Haryadi, W., Daengngern, R., & Pranowo, H. D. (2022). Molecular design of benzo [c][1, 2, 5] thiadiazole or thieno [3, 4-d] pyridazine-based auxiliary acceptors through different anchoring groups in D-π-AA framework: A DFT/TD-DFT study. Journal of Molecular Graphics and Modelling, 113, 108148.
  • Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K., & Grätzel, M. (2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry, 6(3), 242-247.
  • Mersal, G. A., Toghan, A., Yahia, I. S., & El‐Sheshtawy, H. S. (2021). Pyrrole/thiophene π‐bridged two triphenylamine electron donor and substituted thiobarbituric electron acceptor for D‐π‐A‐D‐featured DSSC applications. Journal of the Chinese Chemical Society, 68(10), 1842-1851.
  • Muthu, S., & Maheswari, J. U. (2012). Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H, UV) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 4-[(4-aminobenzene) sulfonyl] aniline by ab initio HF and density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 92, 154-163.
  • Noh, H. J., Ji, J.-M., Hwang, S. P., Kim, C. H., & Kim, H. K. (2021). D-π-A-structured organic sensitizers with π-extended auxiliary acceptor units for high-performance dye-sensitized solar cells. Dyes and Pigments, 195, 109681.
  • O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 353(6346), 737-740.
  • Patil, D. S., Avhad, K. C., & Sekar, N. (2018). Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties–DFT approach. Computational and Theoretical Chemistry, 1138, 75-83.
  • Pounraj, P., Mohankumar, V., Pandian, M. S., & Ramasamy, P. (2018). Donor functionalized quinoline based organic sensitizers for dye sensitized solar cell (DSSC) applications: DFT and TD-DFT investigations. Journal of Molecular Modeling, 24, 1-23.
  • Raftani, M., Abram, T., Azaid, A., Kacimi, R., Bennani, M., & Bouachrine, M. (2023). New organic dyes with low bandgap based on heterocyclic compounds for dye-sensitized solar cells applications. Biointerface Research in Applied Chemistry, 13.
  • Roohi, H., & Mohtamadifar, N. (2022). The role of the donor group and electron-accepting substitutions inserted in π-linkers in tuning the optoelectronic properties of D–π–A dye-sensitized solar cells: a DFT/TDDFT study. RSC advances, 12(18), 11557-11573.
  • Roy, J. K., Kar, S., & Leszczynski, J. (2018). Insight into the optoelectronic properties of designed solar cells efficient tetrahydroquinoline dye-sensitizers on TiO2 (101) surface: first principles approach. Scientific Reports, 8(1), 10997.
  • Saad Ebied, M., Dongol, M., Ibrahim, M., Nassary, M., Elnobi, S., & Abuelwafa, A. A. (2022). Effect of carboxylic acid and cyanoacrylic acid as anchoring groups on Coumarin 6 dye for dye-sensitized solar cells: DFT and TD-DFT study. Structural Chemistry, 33(6), 1921-1933.
  • Singh, M., & Kanaparthi, R. K. (2022). Theoretical exploration of 1, 3-Indanedione as electron acceptor-cum-anchoring group for designing sensitizers towards DSSC applications. Solar Energy, 237, 456-469.
  • Tan, L.-L., Huang, J.-F., Shen, Y., Xiao, L.-M., Liu, J.-M., Kuang, D.-B., & Su, C.-Y. (2014). Highly efficient and stable organic sensitizers with duplex starburst triphenylamine and carbazole donors for liquid and quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2(24), 8988-8994.
  • Tripathi, A., Kumar, V., & Chetti, P. (2022). Impact of internal (donor/acceptor) moieties and π-spacer in triphenylamine-based dyes for DSSCs. Journal of Photochemistry and Photobiology A: Chemistry, 426, 113738. Turhan, Z. Ş. (2021). Fenazin Tabanlı Bileşiklerin OLED ve TADF Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 11(4), 2926-2936.
  • Ugurlu, G., & Beytur, M. (2020). Theoretical studies on the structural, vibrational, conformational analysis and nonlinear optic property of 4-(methoxycarbonyl)-phenylboronic acid. INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 59(10), 1504-1512.
  • Uğurlu, G. (2020). Ortorombik metaborik asit molekülünün moleküler yapısı ve elektronik özellikleri üzerindeki konformasyonel etkinin teorik olarak incelenmesi. Journal of Boron, 5(2), 91-99.
  • Ulaş, Y. (2020). Experimental and Theoretical Studies of 2-(naphthalen-1-yl (piperidin-1-yl) methyl) phenol Compound. J. Chem. Soc. Pak, 42(6), 818-826.
  • Ulaş, Y. (2021). Investigation of the relationship between the substituent and nonlinear optical properties in 2-(Phenyl ((4-Vinylphenyl) Amino) Methyl) phenol derivative compounds by DFT method. Journal of the Chemical Society of Pakistan, 43(3), 271-277.
  • Wazzan, N., & Irfan, A. (2020). Promising architectures modifying the D-π-A architecture of 2, 3-dipentyldithieno [3, 2-f: 2′, 3′-h] quinoxaline-based dye as efficient sensitizers in dye-sensitized solar cells: a DFT study. Materials Science in Semiconductor Processing, 120, 105260.
  • Xu, Z., Li, Y., Zhang, W., Yuan, S., Hao, L., Xu, T., & Lu, X. (2019). DFT/TD-DFT study of novel T shaped phenothiazine-based organic dyes for dye-sensitized solar cells applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 212, 272-280.
  • Yang, Z., Liu, C., Li, K., Cole, J. M., Shao, C., & Cao, D. (2018). Rational design of dithienopicenocarbazole-based dyes and a prediction of their energy-conversion efficiency characteristics for dye-sensitized solar cells. ACS Applied Energy Materials, 1(4), 1435-1444.
  • Zhang, C.-R., Liu, L., Zhe, J.-W., Jin, N.-Z., Ma, Y., Yuan, L.-H., Zhang, M.-L., Wu, Y.-Z., Liu, Z.-J., & Chen, H.-S. (2013). The role of the conjugate bridge in electronic structures and related properties of tetrahydroquinoline for dye sensitized solar cells. International journal of molecular sciences, 14(3), 5461-5481.
  • Zhang, R., Du, B., Sun, G., & Sun, Y. (2010). Experimental and theoretical studies on o-, m-and p-chlorobenzylideneaminoantipyrines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(3), 1115-1124.
  • Zhang, Z., Hu, W., He, R., Shen, W., & Li, M. (2017). The influence of inserted thiophene into the (π-A'-π)-bridge on photovoltaic performances of dye-sensitized solar cells. Materials Chemistry and Physics, 191, 121-128.
There are 55 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Zeynep Turhan 0000-0002-3587-2576

Erhan Öztürk 0000-0003-4006-2428

Necdet Karakoyun 0000-0002-6083-6921

Publication Date December 30, 2023
Submission Date December 13, 2023
Acceptance Date December 29, 2023
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

APA Turhan, Z., Öztürk, E., & Karakoyun, N. (2023). Quantum Chemical Studies of Sensitizers Designed for Dye-Sensitive Solar Cells. Caucasian Journal of Science, 10(2), 162-182. https://doi.org/10.48138/cjo.1404252

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png