Research Article
BibTex RIS Cite
Year 2020, Volume: 10 Issue: 4, 435 - 442, 30.12.2020
https://doi.org/10.33808/clinexphealthsci.797126

Abstract

Supporting Institution

Marmara Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

SAG-C-YLP-131217-0665

References

  • 1- Singh K, Suvarna S, Agnihotri Y, Sahoo S, Kumar P. Color stability of aesthetic restorative materials after exposure to commonly consumed beverages: A systematic review of literature. Eur J Prostho 2015; 2: 15-22
  • 2- de Oliveira, M and Botta A. Effects of immersion media and repolishing on color stability and superficial morphology of nanofilled composite resin. Microsc Microanal 2014; 20: 1234-1239.
  • 3- Bonilla Bonilla ED, Mardirossian G, Caputo AA. Fracture toughness of posterior resin composites. Quintessence Int. 2001;32(3):206-210.
  • 4- de Freitas CR, Miranda MI, de Andrade MF, Flores VH, Vaz LG, Guimarães C. Resistance to maxillary premolar fractures after restoration of class II preparations with resin composite or ceromer. Quintessence Int. 2002;33(8):589-594.
  • 5- Juntavee, N and Millstein, P. Effect of surface roughness and cement space on crown retention. Journal of Prosthetic Dentistry. 1992; 63 (3), 482-6.
  • 6- Batchelor R F. Transverse Test for Non-metallic Denture Base Materials: A Modified and Improved Method, Br Dent J. 1969; 26: 30-31.
  • 7- O’Brien WJ, Johnston WM, Fanian F, Lambert S. The surface roughness and gloss composites. J Dent Res. 1984; 685-688
  • 8- Hooshmand T, Parvizi S, Keshvad A. Effect of surface acid etching on the biaxial exural strength of two hot- pressed glass ceramics. J Prosthodont 2008; 17:415-419.
  • 9- Topcu F, Sahinkesen G, Yamanel K, et al. Influence of different drinks on the colour stability of dental resin composites. Eur J Dent. 2009; 3: 50-56.
  • 10- Nawafleh N, Mack F, Öchsner A. Masticatory loading and oral environ ment simulation in testing lithium disilicate restorations: A structured review, in Öchsner A, Altenbach H: Applications of Computational Tools in Biosciences and Medical Engineering. Switzerland, Springer. 2015; 189 - 215
  • 11- Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide stabilized zirconium dioxide compared to porcelain veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014; 72:145-53
  • 12- Cotes C, Arata A, Melo RM, Bottino MA, Machado JP, Souza RO. Effects of aging procedures on the topographic surface, structural stability, and mechanical strength of a ZrObased dental ceramic. Dent Mater 2014; 30: 396–404.
  • 13- Flinn B, deGroot D, Mancl L, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent. 2012;108: 223–30.
  • 14- Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M. Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia. Acta Biomater 2008;4: 1440–7.
  • 15- Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all ceramic materials. Part II. Zirconia - based dental ceramics. Dent Mater. 2004; 20:449 - 56.
  • 16- Almansour, H and Alqahtani, F. The Effect of in vitro Aging and Fatigue on the Flexural Strength of Monolithic High-translucency Zirconia Restorations. The Journal of Contemporary Dental Practice. 2018; 19: 867-873.
  • 17- Ozer F, Naden A, Turp V, Mante F, Sen D, Blatz MB. Effect of thickness and surface modifications on flexural strength of monolithic zirconia. J Prosthet Dent. 2018;119(6):987-993
  • 18- Bagheri H, Hooshmand T, Aghajani F. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics. J Dent (Tehran). 2015;12(9):621-629.
  • 19- Muench A, Correa IC, Grande RH, João M. The effect of specimen dimensions on the flexural strength of a composite resin. J Appl Oral Sci. 2005;13(3):265-268.
  • 20- Hernandes DK, Arrais CA, Lima Ed, Cesar PF, Rodrigues JA. Influence of resin cement shade on the color and translucency of ceramic veneers. J Appl Oral Sci. 2016;24(4):391-396.
  • 21- Ghavami-Lahiji M, Firouzmanesh M, Bagheri H, Jafarzadeh Kashi TS, Razazpour F, Behroozibakhsh M. The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite. Restor Dent Endod. 2018;43(2):e26.
  • 22- Al-Shalawi, H, Al-Saif, M, Mohammad, N, hagha, R, Alhaj, M, Al Saffan, A. Effect of Discolored Drinks Available in the Saudi Market on Composite Restorations. IOSR Journal of Dental and Medical Sciences. 2017; 16 (6), 114-119.
  • 23- Albakrya, M, Guazzatoa, M, Swain, M. Fracture toughness and hardness evaluation of three pressable all-ceramic dental materials. Journal of Dentistry. 2003; 31 (1), 181–188.
  • 24- Chung SM, Yap AU, Koh WK, Tsai KT, Lim CT. Measurement of Poisson's ratio of dental composite restorative materials. Biomaterials. 2004;25(13):2455-2460.
  • 25- Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent. 1999; 27:89–99.
  • 26- Lambade DP, Gundawar SM, Radke UM. Evaluation of adhesive bonding of lithium disilicate ceramic material with duel cured resin luting agents. J Clin Diagn Res. 2015;9(2):ZC01-ZC5.
  • 27- Porto TS, Roperto RC, Akkus A, et al. Effect of thermal cycling on fracture toughness of CAD/CAM materials. Am J Dent. 2018;31(4):205-210
  • 28- Shafter M, Jain V, Wicks R and Nathanson D. Effect of Thermocycling on Flexural Strength of Different CAD/CAM Material. J Dent & Oral Disord. 2017; 3 (5), 1071.
  • 29- Morresi AL, D'Amario M, Monaco A, Rengo C, Grassi FR, Capogreco M. Effects of critical thermal cycling on the flexural strength of resin composites. J Oral Sci. 2015;57(2):137-143.
  • 30- Li, Q Yu, H, Wang, Y. Spectrophotometric evaluation of the optical influence of core build-up composites on all-ceramic materials. dental materials. 2009; 25 (1), 158–165.
  • 31- Francescantonio, M, Rueggeberg, FA, Arrais, C, Ambrosano G, Giannini, M. biaxial flexure strength and modulus of dual resin cements. Rev Ondonto Cienic. 2012; 27 (2), 147-151.
  • 32- Prakki A, Cilli R, Da Costa AU, Goncalves SE, Mondelli RF, Pereira JC. Effect of resin luting film thickness on fracture resistance of a ceramic cemented to dentin. J Prosthodont. 2007; 16:172-8.
  • 33- Scherrer SS, de Rijk WG, Belser UC, Meyer JM. Effect of cement film thickness on the fracture resistance of a machinable glass-ceramic. Dent Mater. 1994; 10:172-7.
  • 34- Hamed JG, Bakry SI, Hussein SA, Al Abbassy FH. Evaluation of biaxial flexural strength and translucency of multichromatic translucent zirconia and lithium disilicate ceramics. Alexandria Dental Journal. 2018; 43 (1), 86-93.
  • 35- Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999; 20:1-25
  • 36- Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide stabilized zirconium dioxide compared to porcelain veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014; 72:145-53
  • 37- Borba M, Bona AD, Cecchetti D. Flexural strength and hardness of direct and indirect composites. Dental materials. 2009; 23 (1), 5-10.
  • 38- Cesar PF, Miranda Jr. WG, Braga RR. Influence of shade and storage time on the flexural strength, flexural modulus, and hardness of composites used for indirect restorations. J Prosthet Dent. 2001;86(3):289-96.

Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements

Year 2020, Volume: 10 Issue: 4, 435 - 442, 30.12.2020
https://doi.org/10.33808/clinexphealthsci.797126

Abstract

Objective: The aim of the study was to examine the fracture resistance of lithium disilicate, indirect resin composite and zirconia by using dual cure resin cements.
Methods: Three groups of 180 samples (n= 60) of E-max, zirconia and indirect resin composite materials (10mm diameter and 1 mm thickness). Discs were fabricated and cemented with three dual curing resin cements. Aging treatment was then applied to the discs by using thermal cycle machine (at 5°C to 55°C/dwell time: 20s), 10000 cycles for 168 hours’ 7 days. Fracture tests were performed to the sample discs using piston on three balls test to determine the biaxial flexure strength of the 180 discs of the three materials. The results were analysed by using one-way analysis of variance (ANOVA) and t-test.
Results: Statistically significant difference was found between control groups (before cementation and thermal cycle) and both group B (after cementation before thermal cycle) and group C (after cementation and thermal cycle) in all materials (P<0.05). Comparing Zirconia, Gradia and E-max all control groups showed statistically significant difference and Zirconia was showed greater flexural resistance against other materials. In addition, all materials also showed statistically significant difference in Variolink/Multilink cemented Group B and C. In Nexus cemented Group B and C statistically significant difference was found only Zirconia material. Similar to control group results, Zirconia material was showed greater flexural resistance values with both cements in Group B and C.
Conclusion: There is a difference between flexural strength of the three materials, Zirconia has a better flexural strength when compared to lithium disilicate and indirect resin composite.

Project Number

SAG-C-YLP-131217-0665

References

  • 1- Singh K, Suvarna S, Agnihotri Y, Sahoo S, Kumar P. Color stability of aesthetic restorative materials after exposure to commonly consumed beverages: A systematic review of literature. Eur J Prostho 2015; 2: 15-22
  • 2- de Oliveira, M and Botta A. Effects of immersion media and repolishing on color stability and superficial morphology of nanofilled composite resin. Microsc Microanal 2014; 20: 1234-1239.
  • 3- Bonilla Bonilla ED, Mardirossian G, Caputo AA. Fracture toughness of posterior resin composites. Quintessence Int. 2001;32(3):206-210.
  • 4- de Freitas CR, Miranda MI, de Andrade MF, Flores VH, Vaz LG, Guimarães C. Resistance to maxillary premolar fractures after restoration of class II preparations with resin composite or ceromer. Quintessence Int. 2002;33(8):589-594.
  • 5- Juntavee, N and Millstein, P. Effect of surface roughness and cement space on crown retention. Journal of Prosthetic Dentistry. 1992; 63 (3), 482-6.
  • 6- Batchelor R F. Transverse Test for Non-metallic Denture Base Materials: A Modified and Improved Method, Br Dent J. 1969; 26: 30-31.
  • 7- O’Brien WJ, Johnston WM, Fanian F, Lambert S. The surface roughness and gloss composites. J Dent Res. 1984; 685-688
  • 8- Hooshmand T, Parvizi S, Keshvad A. Effect of surface acid etching on the biaxial exural strength of two hot- pressed glass ceramics. J Prosthodont 2008; 17:415-419.
  • 9- Topcu F, Sahinkesen G, Yamanel K, et al. Influence of different drinks on the colour stability of dental resin composites. Eur J Dent. 2009; 3: 50-56.
  • 10- Nawafleh N, Mack F, Öchsner A. Masticatory loading and oral environ ment simulation in testing lithium disilicate restorations: A structured review, in Öchsner A, Altenbach H: Applications of Computational Tools in Biosciences and Medical Engineering. Switzerland, Springer. 2015; 189 - 215
  • 11- Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide stabilized zirconium dioxide compared to porcelain veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014; 72:145-53
  • 12- Cotes C, Arata A, Melo RM, Bottino MA, Machado JP, Souza RO. Effects of aging procedures on the topographic surface, structural stability, and mechanical strength of a ZrObased dental ceramic. Dent Mater 2014; 30: 396–404.
  • 13- Flinn B, deGroot D, Mancl L, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent. 2012;108: 223–30.
  • 14- Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M. Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia. Acta Biomater 2008;4: 1440–7.
  • 15- Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all ceramic materials. Part II. Zirconia - based dental ceramics. Dent Mater. 2004; 20:449 - 56.
  • 16- Almansour, H and Alqahtani, F. The Effect of in vitro Aging and Fatigue on the Flexural Strength of Monolithic High-translucency Zirconia Restorations. The Journal of Contemporary Dental Practice. 2018; 19: 867-873.
  • 17- Ozer F, Naden A, Turp V, Mante F, Sen D, Blatz MB. Effect of thickness and surface modifications on flexural strength of monolithic zirconia. J Prosthet Dent. 2018;119(6):987-993
  • 18- Bagheri H, Hooshmand T, Aghajani F. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics. J Dent (Tehran). 2015;12(9):621-629.
  • 19- Muench A, Correa IC, Grande RH, João M. The effect of specimen dimensions on the flexural strength of a composite resin. J Appl Oral Sci. 2005;13(3):265-268.
  • 20- Hernandes DK, Arrais CA, Lima Ed, Cesar PF, Rodrigues JA. Influence of resin cement shade on the color and translucency of ceramic veneers. J Appl Oral Sci. 2016;24(4):391-396.
  • 21- Ghavami-Lahiji M, Firouzmanesh M, Bagheri H, Jafarzadeh Kashi TS, Razazpour F, Behroozibakhsh M. The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite. Restor Dent Endod. 2018;43(2):e26.
  • 22- Al-Shalawi, H, Al-Saif, M, Mohammad, N, hagha, R, Alhaj, M, Al Saffan, A. Effect of Discolored Drinks Available in the Saudi Market on Composite Restorations. IOSR Journal of Dental and Medical Sciences. 2017; 16 (6), 114-119.
  • 23- Albakrya, M, Guazzatoa, M, Swain, M. Fracture toughness and hardness evaluation of three pressable all-ceramic dental materials. Journal of Dentistry. 2003; 31 (1), 181–188.
  • 24- Chung SM, Yap AU, Koh WK, Tsai KT, Lim CT. Measurement of Poisson's ratio of dental composite restorative materials. Biomaterials. 2004;25(13):2455-2460.
  • 25- Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent. 1999; 27:89–99.
  • 26- Lambade DP, Gundawar SM, Radke UM. Evaluation of adhesive bonding of lithium disilicate ceramic material with duel cured resin luting agents. J Clin Diagn Res. 2015;9(2):ZC01-ZC5.
  • 27- Porto TS, Roperto RC, Akkus A, et al. Effect of thermal cycling on fracture toughness of CAD/CAM materials. Am J Dent. 2018;31(4):205-210
  • 28- Shafter M, Jain V, Wicks R and Nathanson D. Effect of Thermocycling on Flexural Strength of Different CAD/CAM Material. J Dent & Oral Disord. 2017; 3 (5), 1071.
  • 29- Morresi AL, D'Amario M, Monaco A, Rengo C, Grassi FR, Capogreco M. Effects of critical thermal cycling on the flexural strength of resin composites. J Oral Sci. 2015;57(2):137-143.
  • 30- Li, Q Yu, H, Wang, Y. Spectrophotometric evaluation of the optical influence of core build-up composites on all-ceramic materials. dental materials. 2009; 25 (1), 158–165.
  • 31- Francescantonio, M, Rueggeberg, FA, Arrais, C, Ambrosano G, Giannini, M. biaxial flexure strength and modulus of dual resin cements. Rev Ondonto Cienic. 2012; 27 (2), 147-151.
  • 32- Prakki A, Cilli R, Da Costa AU, Goncalves SE, Mondelli RF, Pereira JC. Effect of resin luting film thickness on fracture resistance of a ceramic cemented to dentin. J Prosthodont. 2007; 16:172-8.
  • 33- Scherrer SS, de Rijk WG, Belser UC, Meyer JM. Effect of cement film thickness on the fracture resistance of a machinable glass-ceramic. Dent Mater. 1994; 10:172-7.
  • 34- Hamed JG, Bakry SI, Hussein SA, Al Abbassy FH. Evaluation of biaxial flexural strength and translucency of multichromatic translucent zirconia and lithium disilicate ceramics. Alexandria Dental Journal. 2018; 43 (1), 86-93.
  • 35- Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999; 20:1-25
  • 36- Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide stabilized zirconium dioxide compared to porcelain veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014; 72:145-53
  • 37- Borba M, Bona AD, Cecchetti D. Flexural strength and hardness of direct and indirect composites. Dental materials. 2009; 23 (1), 5-10.
  • 38- Cesar PF, Miranda Jr. WG, Braga RR. Influence of shade and storage time on the flexural strength, flexural modulus, and hardness of composites used for indirect restorations. J Prosthet Dent. 2001;86(3):289-96.
There are 38 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Mohammed Badwan 0000-0001-6349-8684

Erkut Kahramanoğlu 0000-0002-2583-6627

Project Number SAG-C-YLP-131217-0665
Publication Date December 30, 2020
Submission Date September 18, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Badwan, M., & Kahramanoğlu, E. (2020). Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements. Clinical and Experimental Health Sciences, 10(4), 435-442. https://doi.org/10.33808/clinexphealthsci.797126
AMA Badwan M, Kahramanoğlu E. Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements. Clinical and Experimental Health Sciences. December 2020;10(4):435-442. doi:10.33808/clinexphealthsci.797126
Chicago Badwan, Mohammed, and Erkut Kahramanoğlu. “Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements”. Clinical and Experimental Health Sciences 10, no. 4 (December 2020): 435-42. https://doi.org/10.33808/clinexphealthsci.797126.
EndNote Badwan M, Kahramanoğlu E (December 1, 2020) Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements. Clinical and Experimental Health Sciences 10 4 435–442.
IEEE M. Badwan and E. Kahramanoğlu, “Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements”, Clinical and Experimental Health Sciences, vol. 10, no. 4, pp. 435–442, 2020, doi: 10.33808/clinexphealthsci.797126.
ISNAD Badwan, Mohammed - Kahramanoğlu, Erkut. “Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements”. Clinical and Experimental Health Sciences 10/4 (December 2020), 435-442. https://doi.org/10.33808/clinexphealthsci.797126.
JAMA Badwan M, Kahramanoğlu E. Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements. Clinical and Experimental Health Sciences. 2020;10:435–442.
MLA Badwan, Mohammed and Erkut Kahramanoğlu. “Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements”. Clinical and Experimental Health Sciences, vol. 10, no. 4, 2020, pp. 435-42, doi:10.33808/clinexphealthsci.797126.
Vancouver Badwan M, Kahramanoğlu E. Fracture Resistance of Lithıum Disilicate, Indirect Resin Composite and Zirconıa by Using Dual Cure Resin Cements. Clinical and Experimental Health Sciences. 2020;10(4):435-42.

14639   14640