Erratum
BibTex RIS Cite

Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study

Year 2020, Volume: 10 Issue: 4, 473 - 473, 30.12.2020

Abstract

Objective: Tideglusib is a GSK-3 inhibitor activating Wnt/β-catenin signaling pathway which has significant importance in regenerative response.
The aim of this study was to evaluate the cytotoxicity and protein expression impacts of Tideglusib on human periodontal cell lines.
Methods: Cytotoxicity effect of different concentrations (50nM, 100nM, 200nM) of Tideglusib application on human gingival fibroblast (hGF),
periodontal ligament fibroblast (hPDLF), and osteoblast (hOB) cell lines was determined. Type-I and III collagen expressions were evaluated
after 24-hour application of 50nM Tideglusib.
Results: The cytotoxicity of 200nM Tideglusib was higher in hGF and hOB (p<0.05), but no difference was found in hPDLF compared to the
respective control group (p>0.05). The hGF and hOB treated with 50nM Tideglusib expressed an increased level of Type-I collagen (p<0.05), but
no difference was detected in the hPDLF compared to the respective control (p>0.05). Type-III collagen expressions were similar between the
test and control groups for each cell line (p>0.05).
Conclusion: Tideglusib is not cytotoxic at 50nM and 100nM concentrations and may have positive effect on bone regeneration rather than
periodontal regeneration since it stimulated Type-I collagen production in hGF and hOB cells, but not in hPDLF.

Supporting Institution

Marmara University Scientific Research Projects Unit

Project Number

SAG-C-DUP-131217-0658

Thanks

We thank our colleagues from Marmara University Genetic and Metabolic Diseases Research and Investigation Center who provided insight and expertise that greatly assisted the research

References

  • 1. Kocher T, Konig J, Dzierzon U, Sawaf H, Plagmann HC. Disease progression in periodontally treated and untreated patients--a retrospective study. J Clin Periodontol 2000; 27:866-872.
  • 2. Melcher AH. On the repair potential of periodontal tissues. J Periodontol 1976; 47:256-260.
  • 3. Bosshardt DD, Sculean A. Does periodontal tissue regeneration really work? Periodontol 2000 2009; 51:208-219.
  • 4. Neves VC, Babb R, Chandrasekaran D, Sharpe PT. Promotion of natural tooth repair by small molecule GSK3 antagonists. Scientific reports 2017; 7:39654.
  • 5. Willert K, Nusse R. beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 1998; 8:95-102.
  • 6. Minear S, Leucht P, Jiang J, Liu B, Zeng A, Fuerer C, et al. Wnt proteins promote bone regeneration. Sci Transl Med 2010; 2:29ra30.
  • 7. Whyte JL, Smith AA, Helms JA. Wnt signaling and injury repair. Cold Spring Harbor perspectives in biology 2012; 4:a008078.
  • 8. Leucht P, Minear S, Ten Berge D, Nusse R, Helms JA. Translating insights from development into regenerative medicine: the function of Wnts in bone biology. Semin Cell Dev Biol 2008; 19:434-443.
  • 9. Han PP, Wu CT, Chang J, Xiao Y. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/beta-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials 2012; 33:6370-6379.
  • 10. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 2007; 447:316-320.
  • 11. Zhao J, Kim KA, De Vera J, Palencia S, Wagle M, Abo A. R-Spondin1 protects mice from chemotherapy or radiation-induced oral mucositis through the canonical Wnt/beta-catenin pathway. Proc Natl Acad Sci U S A 2009; 106:2331-2336.
  • 12. Petersen CP, Reddien PW. A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci U S A 2009; 106:17061-17066.
  • 13. Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Marti M, Dubova I, et al. Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 2006; 20:3232-3237.
  • 14. Kubo F, Takeichi M, Nakagawa S. Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 2003; 130:587-598.
  • 15. Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, et al. Bone regeneration is regulated by wnt signaling. J Bone Miner Res 2007; 22:1913-1923.
  • 16. Lim WH, Liu B, Cheng D, Williams BO, Mah SJ, Helms JA. Wnt signaling regulates homeostasis of the periodontal ligament. J Periodontal Res 2014; 49:751-759.
  • 17. Rooker SM, Liu B, Helms JA. Role of Wnt signaling in the biology of the periodontium. Dev Dyn 2010; 239:140-147.
  • 18. Zhang R, Yang G, Wu X, Xie J, Yang X, Li T. Disruption of Wnt/beta-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci 2013; 9:228-236.
  • 19. Kim TH, Lee JY, Baek JA, Lee JC, Yang X, Taketo MM, et al. Constitutive stabilization of ss-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun 2011; 412:549-555.
  • 20. Nemoto E, Koshikawa Y, Kanaya S, Tsuchiya M, Tamura M, Somerman MJ, et al. Wnt signaling inhibits cementoblast differentiation and promotes proliferation. Bone 2009; 44:805-812.
  • 21. Han P, Ivanovski S, Crawford R, Xiao Y. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration. J Bone Miner Res 2015; 30:1160-1174.
  • 22. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2004; 341:19-39.
  • 23. Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 2003; 18:960-974.
  • 24. Popelut A, Rooker SM, Leucht P, Medio M, Brunski JB, Helms JA. The acceleration of implant osseointegration by liposomal Wnt3a. Biomaterials 2010; 31:9173-9181.
  • 25. Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 2004; 25:471-480.
  • 26. Adamowicz K, Wang H, Jotwani R, Zeller I, Potempa J, Scott DA. Inhibition of GSK3 abolishes bacterial-induced periodontal bone loss in mice. Mol Med 2012; 18:1190-1196.
  • 27. Niles AL, Moravec RA, Eric Hesselberth P, Scurria MA, Daily WJ, Riss TL. A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers. Anal Biochem 2007; 366:197-206.
  • 28. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992; 7:302-310.
  • 29. Campoccia D, Arciola CR, Cervellati M, Maltarello MC, Montanaro L. In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorohydroxyapatite-coated substrata with different roughness. Biomaterials 2003; 24:587-596.
  • 30. Yliheikkila PK, Masuda T, Ambrose WW, Suggs CA, Felton DA, Cooper LF. Preliminary comparison of mineralizing multilayer cultures formed by primary fetal bovine mandibular osteoblasts grown on titanium, hydroxyapatite, and glass substrates. Int J Oral Maxillofac Implants 1996; 11:456-465.
  • 31. Kook SH, Lee D, Cho ES, Heo JS, Poudel SB, Ahn YH, et al. Activation of canonical Wnt/beta-catenin signaling inhibits H2O2-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts. Mol Cell Biochem 2016; 411:83-94.
  • 32. Kim HJ, Kim SH, Kim MS, Lee EJ, Oh HG, Oh WM, et al. Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. J Biomed Mater Res A 2005; 74:366-373.
  • 33. Scotchford CA, Ball M, Winkelmann M, Voros J, Csucs C, Brunette DM, et al. Chemically patterned, metal-oxide-based surfaces produced by photolithographic techniques for studying protein- and cell-interactions. II: Protein adsorption and early cell interactions. Biomaterials 2003; 24:1147-1158.
  • 34. Bergmann C, Akhmetshina A, Dees C, Palumbo K, Zerr P, Beyer C, et al. Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway. Annals of the rheumatic diseases 2011; 70:2191-2198.
  • 35. Burgy O, Königshoff M. The WNT signaling pathways in wound healing and fibrosis. Matrix Biology 2018.
  • 36. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, et al. Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun 2012; 3:735.
  • 37. Hamburg EJ, Atit RP. Sustained beta-catenin activity in dermal fibroblasts is sufficient for skin fibrosis. J Invest Dermatol 2012; 132:2469-2472.
  • 38. Bahammam M, Black SA, Jr., Sume SS, Assaggaf MA, Faibish M, Trackman PC. Requirement for active glycogen synthase kinase-3beta in TGF-beta1 upregulation of connective tissue growth factor (CCN2/CTGF) levels in human gingival fibroblasts. Am J Physiol Cell Physiol 2013; 305:C581-590.
  • 39. Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiere B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006; 21:934-945.
  • 40. Caetano-Lopes J, Canhao H, Fonseca JE. Osteoblasts and bone formation. Acta Reumatol Port 2007; 32:103-110.
  • 41. Lerner UH, Ohlsson C. The WNT system: background and its role in bone. J Intern Med 2015; 277:630-649.
  • 42. Dacic S, Kalajzic I, Visnjic D, Lichtler AC, Rowe DW. Col1a1-driven transgenic markers of osteoblast lineage progression. J Bone Miner Res 2001; 16:1228-1236.
  • 43. Mariotti A. The extracellular matrix of the periodontium: dynamic and interactive tissues. Periodontol 2000 1993; 3:39-63.
  • 44. Xiang FL, Fang M, Yutzey KE. Loss of beta-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nat Commun 2017; 8:712.
  • 45. Roh MR, Kumar R, Rajadurai A, Njauw C, Ryoo UH, Chung KY, et al. Beta-catenin causes fibrotic changes in the extracellular matrix via upregulation of collagen I transcription. Br J Dermatol 2017; 177:312-315.
  • 46. Beljaars L, Daliri S, Dijkhuizen C, Poelstra K, Gosens R. WNT-5A regulates TGFβ-related activities in liver fibrosis. American Journal of Physiology-Heart and Circulatory Physiology 2017.
  • 47. Beyer C, Schramm A, Akhmetshina A, Dees C, Kireva T, Gelse K, et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Annals of the rheumatic diseases 2012; 71:761-767.
  • 48. Svegliati S, Marrone G, Pezone A, Spadoni T, Grieco A, Moroncini G, et al. Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci Signal 2014; 7:ra84.
  • 49. Glass DA, 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005; 8:751-764.
  • 50. Ge W-S, Wang Y-J, Wu J-X, Fan J-G, Chen Y-W, Zhu L. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Molecular medicine reports 2014; 9:2145-2151.
Year 2020, Volume: 10 Issue: 4, 473 - 473, 30.12.2020

Abstract

Project Number

SAG-C-DUP-131217-0658

References

  • 1. Kocher T, Konig J, Dzierzon U, Sawaf H, Plagmann HC. Disease progression in periodontally treated and untreated patients--a retrospective study. J Clin Periodontol 2000; 27:866-872.
  • 2. Melcher AH. On the repair potential of periodontal tissues. J Periodontol 1976; 47:256-260.
  • 3. Bosshardt DD, Sculean A. Does periodontal tissue regeneration really work? Periodontol 2000 2009; 51:208-219.
  • 4. Neves VC, Babb R, Chandrasekaran D, Sharpe PT. Promotion of natural tooth repair by small molecule GSK3 antagonists. Scientific reports 2017; 7:39654.
  • 5. Willert K, Nusse R. beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 1998; 8:95-102.
  • 6. Minear S, Leucht P, Jiang J, Liu B, Zeng A, Fuerer C, et al. Wnt proteins promote bone regeneration. Sci Transl Med 2010; 2:29ra30.
  • 7. Whyte JL, Smith AA, Helms JA. Wnt signaling and injury repair. Cold Spring Harbor perspectives in biology 2012; 4:a008078.
  • 8. Leucht P, Minear S, Ten Berge D, Nusse R, Helms JA. Translating insights from development into regenerative medicine: the function of Wnts in bone biology. Semin Cell Dev Biol 2008; 19:434-443.
  • 9. Han PP, Wu CT, Chang J, Xiao Y. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/beta-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials 2012; 33:6370-6379.
  • 10. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 2007; 447:316-320.
  • 11. Zhao J, Kim KA, De Vera J, Palencia S, Wagle M, Abo A. R-Spondin1 protects mice from chemotherapy or radiation-induced oral mucositis through the canonical Wnt/beta-catenin pathway. Proc Natl Acad Sci U S A 2009; 106:2331-2336.
  • 12. Petersen CP, Reddien PW. A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci U S A 2009; 106:17061-17066.
  • 13. Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Marti M, Dubova I, et al. Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 2006; 20:3232-3237.
  • 14. Kubo F, Takeichi M, Nakagawa S. Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 2003; 130:587-598.
  • 15. Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, et al. Bone regeneration is regulated by wnt signaling. J Bone Miner Res 2007; 22:1913-1923.
  • 16. Lim WH, Liu B, Cheng D, Williams BO, Mah SJ, Helms JA. Wnt signaling regulates homeostasis of the periodontal ligament. J Periodontal Res 2014; 49:751-759.
  • 17. Rooker SM, Liu B, Helms JA. Role of Wnt signaling in the biology of the periodontium. Dev Dyn 2010; 239:140-147.
  • 18. Zhang R, Yang G, Wu X, Xie J, Yang X, Li T. Disruption of Wnt/beta-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci 2013; 9:228-236.
  • 19. Kim TH, Lee JY, Baek JA, Lee JC, Yang X, Taketo MM, et al. Constitutive stabilization of ss-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun 2011; 412:549-555.
  • 20. Nemoto E, Koshikawa Y, Kanaya S, Tsuchiya M, Tamura M, Somerman MJ, et al. Wnt signaling inhibits cementoblast differentiation and promotes proliferation. Bone 2009; 44:805-812.
  • 21. Han P, Ivanovski S, Crawford R, Xiao Y. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration. J Bone Miner Res 2015; 30:1160-1174.
  • 22. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2004; 341:19-39.
  • 23. Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 2003; 18:960-974.
  • 24. Popelut A, Rooker SM, Leucht P, Medio M, Brunski JB, Helms JA. The acceleration of implant osseointegration by liposomal Wnt3a. Biomaterials 2010; 31:9173-9181.
  • 25. Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 2004; 25:471-480.
  • 26. Adamowicz K, Wang H, Jotwani R, Zeller I, Potempa J, Scott DA. Inhibition of GSK3 abolishes bacterial-induced periodontal bone loss in mice. Mol Med 2012; 18:1190-1196.
  • 27. Niles AL, Moravec RA, Eric Hesselberth P, Scurria MA, Daily WJ, Riss TL. A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers. Anal Biochem 2007; 366:197-206.
  • 28. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992; 7:302-310.
  • 29. Campoccia D, Arciola CR, Cervellati M, Maltarello MC, Montanaro L. In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorohydroxyapatite-coated substrata with different roughness. Biomaterials 2003; 24:587-596.
  • 30. Yliheikkila PK, Masuda T, Ambrose WW, Suggs CA, Felton DA, Cooper LF. Preliminary comparison of mineralizing multilayer cultures formed by primary fetal bovine mandibular osteoblasts grown on titanium, hydroxyapatite, and glass substrates. Int J Oral Maxillofac Implants 1996; 11:456-465.
  • 31. Kook SH, Lee D, Cho ES, Heo JS, Poudel SB, Ahn YH, et al. Activation of canonical Wnt/beta-catenin signaling inhibits H2O2-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts. Mol Cell Biochem 2016; 411:83-94.
  • 32. Kim HJ, Kim SH, Kim MS, Lee EJ, Oh HG, Oh WM, et al. Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. J Biomed Mater Res A 2005; 74:366-373.
  • 33. Scotchford CA, Ball M, Winkelmann M, Voros J, Csucs C, Brunette DM, et al. Chemically patterned, metal-oxide-based surfaces produced by photolithographic techniques for studying protein- and cell-interactions. II: Protein adsorption and early cell interactions. Biomaterials 2003; 24:1147-1158.
  • 34. Bergmann C, Akhmetshina A, Dees C, Palumbo K, Zerr P, Beyer C, et al. Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway. Annals of the rheumatic diseases 2011; 70:2191-2198.
  • 35. Burgy O, Königshoff M. The WNT signaling pathways in wound healing and fibrosis. Matrix Biology 2018.
  • 36. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, et al. Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun 2012; 3:735.
  • 37. Hamburg EJ, Atit RP. Sustained beta-catenin activity in dermal fibroblasts is sufficient for skin fibrosis. J Invest Dermatol 2012; 132:2469-2472.
  • 38. Bahammam M, Black SA, Jr., Sume SS, Assaggaf MA, Faibish M, Trackman PC. Requirement for active glycogen synthase kinase-3beta in TGF-beta1 upregulation of connective tissue growth factor (CCN2/CTGF) levels in human gingival fibroblasts. Am J Physiol Cell Physiol 2013; 305:C581-590.
  • 39. Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiere B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006; 21:934-945.
  • 40. Caetano-Lopes J, Canhao H, Fonseca JE. Osteoblasts and bone formation. Acta Reumatol Port 2007; 32:103-110.
  • 41. Lerner UH, Ohlsson C. The WNT system: background and its role in bone. J Intern Med 2015; 277:630-649.
  • 42. Dacic S, Kalajzic I, Visnjic D, Lichtler AC, Rowe DW. Col1a1-driven transgenic markers of osteoblast lineage progression. J Bone Miner Res 2001; 16:1228-1236.
  • 43. Mariotti A. The extracellular matrix of the periodontium: dynamic and interactive tissues. Periodontol 2000 1993; 3:39-63.
  • 44. Xiang FL, Fang M, Yutzey KE. Loss of beta-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nat Commun 2017; 8:712.
  • 45. Roh MR, Kumar R, Rajadurai A, Njauw C, Ryoo UH, Chung KY, et al. Beta-catenin causes fibrotic changes in the extracellular matrix via upregulation of collagen I transcription. Br J Dermatol 2017; 177:312-315.
  • 46. Beljaars L, Daliri S, Dijkhuizen C, Poelstra K, Gosens R. WNT-5A regulates TGFβ-related activities in liver fibrosis. American Journal of Physiology-Heart and Circulatory Physiology 2017.
  • 47. Beyer C, Schramm A, Akhmetshina A, Dees C, Kireva T, Gelse K, et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Annals of the rheumatic diseases 2012; 71:761-767.
  • 48. Svegliati S, Marrone G, Pezone A, Spadoni T, Grieco A, Moroncini G, et al. Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci Signal 2014; 7:ra84.
  • 49. Glass DA, 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005; 8:751-764.
  • 50. Ge W-S, Wang Y-J, Wu J-X, Fan J-G, Chen Y-W, Zhu L. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Molecular medicine reports 2014; 9:2145-2151.
There are 50 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Case Report
Authors

Buse Oncu 0000-0002-2555-9973

Ayse Mıne Yılmaz This is me 0000-0003-0802-523X

Betül Karademir Yılmaz 0000-0003-1762-0284

Elif Çiğdem Altunok This is me 0000-0002-2479-1236

Leyla Kuru 0000-0002-7599-2409

Ömer Birkan Ağralı 0000-0003-4472-8370

Project Number SAG-C-DUP-131217-0658
Publication Date December 30, 2020
Submission Date December 14, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Oncu, B., Mıne Yılmaz, A., Karademir Yılmaz, B., Altunok, E. Ç., et al. (2020). Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study. Clinical and Experimental Health Sciences, 10(4), 473-473.
AMA Oncu B, Mıne Yılmaz A, Karademir Yılmaz B, Altunok EÇ, Kuru L, Ağralı ÖB. Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study. Clinical and Experimental Health Sciences. December 2020;10(4):473-473.
Chicago Oncu, Buse, Ayse Mıne Yılmaz, Betül Karademir Yılmaz, Elif Çiğdem Altunok, Leyla Kuru, and Ömer Birkan Ağralı. “Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study”. Clinical and Experimental Health Sciences 10, no. 4 (December 2020): 473-73.
EndNote Oncu B, Mıne Yılmaz A, Karademir Yılmaz B, Altunok EÇ, Kuru L, Ağralı ÖB (December 1, 2020) Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study. Clinical and Experimental Health Sciences 10 4 473–473.
IEEE B. Oncu, A. Mıne Yılmaz, B. Karademir Yılmaz, E. Ç. Altunok, L. Kuru, and Ö. B. Ağralı, “Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study”, Clinical and Experimental Health Sciences, vol. 10, no. 4, pp. 473–473, 2020.
ISNAD Oncu, Buse et al. “Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study”. Clinical and Experimental Health Sciences 10/4 (December 2020), 473-473.
JAMA Oncu B, Mıne Yılmaz A, Karademir Yılmaz B, Altunok EÇ, Kuru L, Ağralı ÖB. Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study. Clinical and Experimental Health Sciences. 2020;10:473–473.
MLA Oncu, Buse et al. “Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study”. Clinical and Experimental Health Sciences, vol. 10, no. 4, 2020, pp. 473-.
Vancouver Oncu B, Mıne Yılmaz A, Karademir Yılmaz B, Altunok EÇ, Kuru L, Ağralı ÖB. Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study. Clinical and Experimental Health Sciences. 2020;10(4):473-.

14639   14640