Review
BibTex RIS Cite
Year 2021, Volume: 11 Issue: 1, 182 - 190, 31.03.2021
https://doi.org/10.33808/clinexphealthsci.786018

Abstract

References

  • [1] Galante R, Figueiredo-Pina C G, Serro A P. Additive manufacturing of ceramics for dental applications: A review. Dent Mater 2019; 35:825-846.
  • [2] Sevmez H, Gungor M B, Yılmaz H. Rezin Matriks Seramikler. Turkiye Klinikleri J Dental Sci. 2019; 25:351-359. (Turkish)
  • [3] Baroudi K, Ibraheem S N. Assessment of Chair-side Computer-Aided Design and Computer-Aided Manufacturing Restorations: A Review of the Literature. J Int Oral Health 2015; 7:96-104.
  • [4] Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 2008; 204:505-511.
  • [5] Ersu B, Yüzügüllü B, Canay Ş. Sabit restorasyonlarda CAD/CAM uygulamaları. Hacettepe üniversitesi diş hekimliği fakültesi dergisi 2008; 32:58-72. (Turkish)
  • [6] Rekow E D, Erdman A G, Riley D R, Klamecki B. CAD/CAM for dental restorations--some of the curious challenges. IEEE Trans Biomed Eng 1991; 38:314-318.
  • [7] Abduo J, Lyons K, Bennamoun M. Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams. Int J Dent 2014; 2014:783948.
  • [8] Van Noort R. The Future of Dental Devices is Digital. Dent Mater 2012; 28:3-12.
  • [9] Fu L, Engqvist H, Xia W. Glass-Ceramics in Dentistry: A Review. Materials (Basel) 2020; 13:1049.
  • [10] Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci 2018; 93:45-111.
  • [11] Ligon S C, Liska R, Stampfl J, Gurr M, Mulhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017; 117:10212-10290.
  • [12] Ngo T D, Kashani A, Imbalzano G, Nguyen K T Q, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng 2018; 143:172-196.
  • [13] Bhargav A, Sanjairaj V, Rosa V, Feng L, Yh J. Applications of Additive Manufacturing in Dentistry: A review. J Biomed Mater Res B Appl Biomater 2017; 106:2058, 2064.
  • [14] Charles W. Hull A, Calif. , Apparatus for production of three-dimensional objects by stereolithography, in Google Patents. 1986.
  • [15] Revilla-Leon M, Ozcan M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J Prosthodont 2019; 28:146-158.
  • [16] Javaid M H A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res 2019; 9:179-185.
  • [17] Petrovic V, Vicente Haro Gonzalez J, Jordá Ferrando O, Delgado Gordillo J, Ramón Blasco Puchades J, Portolés Griñan L. Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res 2011; 49:1061-1079.
  • [18] L. H, Digital Micromirror Device, in Google Patents. 1999.
  • [19] ASTM, in Standard terminology for additive manufacturing - general principles and terminology. 2009, Committee F42 on Additive Manufacturing Technologies, : West Conshohocken, PA.
  • [20] Revilla-León M, Meyer M J, Özcan M. Metal additive manufacturing technologies: literature review of current status and prosthodontic applications. Int J Comput Dent 2019; 22:55-67.
  • [21] Butler J. Using selective laser sintering for manufacturing. Assembly Autom 2011; 31:212-219.
  • [22] Mazzoli A, Ferretti C, Gigante A, Salvolini E, Mattioli-Belmonte M. Selective Laser Sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering. Rapid Prototyp. J 2015; 21:386-392.
  • [23] Alsalla H H, Smith C, Hao L. The effect of different build orientations on the consolidation, tensile and fracture toughness properties of direct metal laser sintering Ti-6Al-4V. Rapid Prototyp. J 2018; 24:276-284.
  • [24] Salmi M, Tuomi J, Paloheimo K S, Björkstrand R, Paloheimo M, Salo J, Kontio R, Mesimäki K, Mäkitie A A. Patient‐specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyp. J 2012; 18:209-214.
  • [25] Kruth J-P, Mercelis P, Vaerenbergh J V, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J 2005; 11:26-36.
  • [26] Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tools Manuf 2006; 46:1188-1193.
  • [27] Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J 2007; 13:196-203.
  • [28] Niñerola V P R. Powder recyclability in electron beam melting for aeronautical use. Aircr Eng Aerosp Tec 2015; 87:147-155.
  • [29] Taylor A C, Beirne S, Alici G, Wallace G G. System and process development for coaxial extrusion in fused deposition modelling. Rapid Prototyp. J 2017; 23:543-550.
  • [30] Kritchman E M, Zeytoun I, Rapid prototyping apparatus. 2011, Google Patents.
  • [31] Napadensky E, Compositions and methods for use in three dimensional model printing. 2003, Google Patents.
  • [32] Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent 2014; 112:1088-1095.e1.
  • [33] Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: A preliminary experience in digital workflow. J Prosthet Dent 2018; 120:303-308.
  • [34] Venezia P, Muzio L L, De Furia C, Torsello F. Digital manufacturing of occlusal splint: From intraoral scanning to 3D printing. J. Osseointegration 2019; 11:535-539.
  • [35] Chen H, Yang X, Chen L, Wang Y, Sun Y. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays. Sci Rep 2016; 6:19207.
  • [36] Liu Q, Leu M C, Schmitt S M. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 2006; 29:317-335.
  • [37] Serra T, Planell J A, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 2013; 9:5521-5230. [38] Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie Y. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016; 83:127-141.
  • [39] Osman R B, van der Veen A J, Huiberts D, Wismeijer D, Alharbi N. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs. J Mech Behav Biomed Mater 2017; 75:521-528.
  • [40] Tunchel S, Blay A, Kolerman R. Mijiritsky E, Shibli J. A. 3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-Up. Int. J. Dent 2016; 2016:1-9.
  • [41] Ahlholm P, Sipilä K, Vallittu P, Kotiranta U, Lappalainen R. Accuracy of inlay and onlay restorations based on 3D printing or milling technique - a pilot study. The European journal of prosthodontics and restorative dentistry 2019; 27:56-64.
  • [42] Tahayeri A, Morgan M, Fugolin A P, Bompolaki D, Athirasala A, Pfeifer C S, Ferracane J L, Bertassoni L E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018; 34:192-200.
  • [43] Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015; 219:521-529.
  • [44] Lin W S, Harris B T, Pellerito J, Morton D. Fabrication of an interim complete removable dental prosthesis with an in-office digital light processing three-dimensional printer: A proof-of-concept technique. J Prosthet Dent 2018; 120:331-334.
  • [45] Kalberer N, Mehl A, Schimmel M, Müller F, Srinivasan M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: An in vitro evaluation of trueness. J Prosthet Dent 2019; 121:637-643.
  • [46] Wilkes J, Hagedorn Y C, Meiners W, Wissenbach K. Additive manufacturing of ZrO2‐Al2O3 ceramic components by selective laser melting. Rapid Prototyp. J 2013; 19:51-57.
  • [47] Farré-Guasch E, Wolff J, Helder M N, Schulten E A, Forouzanfar T, Klein-Nulend J. Application of Additive Manufacturing in Oral and Maxillofacial Surgery. J Oral Maxillofac Surg 2015; 73:2408-2418.
  • [48] Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Annals of maxillofacial surgery 2014; 4:9-18.
  • [49] Scolozzi P. Maxillofacial reconstruction using polyetheretherketone patient-specific implants by "mirroring" computational planning. Aesthetic Plast Surg 2012; 36:660-665.
  • [50] Javaid M, Haleem A. Additive manufacturing applications in medical cases: A literature based review. Alexandria J. Med 2018; 54:411-422.
  • [51] Alshawaf B, Weber H-P, Finkelman M, El Rafie K, Kudara Y, Papaspyridakos P. Accuracy of printed casts generated from digital implant impressions versus stone casts from conventional implant impressions: A comparative in vitro study. Clin Oral Implants Res 2018; 29:835-842.
  • [52] Choi J J E, Uy C E, Plaksina P, Ramani R S, Ganjigatti R, Waddell J N. Bond Strength of Denture Teeth to Heat-Cured, CAD/CAM and 3D Printed Denture Acrylics. J Prosthodont 2020; 29:415-421.
  • [53] Turbush S K, Turkyilmaz I. Accuracy of three different types of stereolithographic surgical guide in implant placement: an in vitro study. J Prosthet Dent 2012; 108:181-188.
  • [54] Kim T, Lee S, Kim G B, Hong D, Kwon J, Park J-W, Kim N. Accuracy of a simplified 3D-printed implant surgical guide. J Prosthet Dent 2019; S0022-3913:30416.
  • [55] Zhao Y, Li Y, Mao S, Sun W, Yao R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 2015; 7:045002.
  • [56] Shuai C, Gao C, Nie Y, Hu H, Zhou Y, Peng S. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology 2011; 22:285703.
  • [57] Jindal P, Juneja M, Siena F L, Bajaj D, Breedon P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofacial Orthop 2019; 156:694-701.
  • [58] Barazanchi A, Li K C, Al-Amleh B, Lyons K, Waddell J N. Additive Technology: Update on Current Materials and Applications in Dentistry. J Prosthodont 2017; 26:156-163.
  • [59] Kanazawa M, Iwaki M, Minakuchi S, Nomura N. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting. J Prosthet Dent 2014; 112:1441-1447.
  • [60] Ucar Y, Akova T, Akyil M S, Brantley W A. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J Prosthet Dent 2009; 102:253-259.
  • [61] Wang H, Feng Q, Li N, Xu S. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques. J Prosthet Dent 2016; 116:916-923.
  • [62] Revilla-León M, Ceballos L, Martínez-Klemm I, Özcan M. Discrepancy of complete-arch titanium frameworks manufactured using selective laser melting and electron beam melting additive manufacturing technologies. J Prosthet Dent 2018; 120:942-947.
  • [63] Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: A review and prospective. Compos B Eng 2017; 110:442-458.
  • [64] Quan C, Han B, Hou Z, Zhang Q, Tian X, Lu T. 3d printed continuous fiber reinforced composite auxetic honeycomb structures. Compos B Eng 2020; 187:107858.
  • [65] Kuo C-C, Liu L-C, Teng W-F, Chang H-Y, Chien F-M, Liao S-J, Kuo W-F, Chen C-M. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos B Eng 2016; 86:36-39.
  • [66] Senatov F S, Niaza K V, Zadorozhnyy M Y, Maksimkin A V, Kaloshkin S D, Estrin Y Z. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 2016; 57:139-148.
  • [67] Jindal S K, Sherriff M, Waters M G, Smay J E, Coward T J. Development of a 3D printable maxillofacial silicone: Part II. Optimization of moderator and thixotropic agent. J Prosthet Dent 2018; 119:299-304.
  • [68] Chaar M S, Witkowski S, Strub J R, Att W. Effect of veneering technique on the fracture resistance of zirconia fixed dental prostheses. J Oral Rehabil 2013; 40:51-59.
  • [69] Bengisu M, Engineering ceramics. Springer Science & Business Media. 2013:104-136.
  • [70] Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, Liu C, Li Y, Wang P, He Y. 3D printing of ceramics: A review. J Eur Ceram Soc 2019; 39:661-687.
  • [71] Marcus H L, Beaman J J, Barlow J W, Bourell D L. Solid freeform fabrication-powder processing. Am. Ceram. Soc. Bull 1990; 69:1030-1031. [72] Sachs E, Cima M, Cornie J. Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP annals 1990; 39:201-204.
  • [73] Travitzky N, Bonet A, Dermeik B, Fey T, Filbert‐Demut I, Schlier L, Schlordt T, Greil P. Additive manufacturing of ceramic‐based materials. Adv. Eng. Mater 2014; 16:729-754.
  • [74] Pfaffinger M, Mitteramskogler G, Gmeiner R, Stampfl J. Thermal debinding of ceramic-filled photopolymers. Mater. Sci. Forum 2015; 825:75-81.
  • [75] Al-Sanabani F, Madfa A, Al-Qudaimi N. Alumina ceramic for dental applications: A review article. Am. J. Mater. Sci 2014; 1:26-34.
  • [76] Mao L, Kaizer M R, Zhao M, Guo B, Song Y F, Zhang Y. Graded Ultra-Translucent Zirconia (5Y-PSZ) for Strength and Functionalities. J Dent Res 2018; 97:1222-1228.
  • [77] Gracis S, Thompson V P, Ferencz J L, Silva N R, Bonfante E A. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont 2015; 28:227-35.
  • [78] Zhang Y, Lawn B R. Novel Zirconia Materials in Dentistry. J Dent Res 2018; 97:140-147.
  • [79] Hisbergues M, Vendeville S, Vendeville P. Zirconia: Established facts and perspectives for a biomaterial in dental implantology. J Biomed Mater Res B Appl Biomater 2009; 88:519-529.
  • [80] Josset Y, Oum'Hamed Z, Zarrinpour A, Lorenzato M, Adnet J J, Laurent-Maquin D. In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. J Biomed Mater Res 1999; 47:481-493.
  • [81] Shin H, Ko H, Kim M. Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements. Restor Dent Endod 2016; 41:167-175.
  • [82] Özkol E, Zhang W, Ebert J, Telle R. Potentials of the “Direct Inkjet Printing” Method for Manufacturing 3Y-TZP Based Dental Restorations. Journal of the European Ceramic Society 2012; 32:2193–2201.
  • [83] Lian Q, Sui W, Wu X, Yang F, Yang S. Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography. Rapid Prototyp. J 2018; 24:114-119.
  • [84] Cheng Y C, Lin D H, Jiang C P, Lin Y M. Dental implant customization using numerical optimization design and 3‐dimensional printing fabrication of zirconia ceramic. Int J Numer Method Biomed Eng 2017; 33:e2820.
  • [85] Anssari Moin D, Hassan B, Wismeijer D. A novel approach for custom three-dimensional printing of a zirconia root analogue implant by digital light processing. Clin Oral Implants Res 2017; 28:668-670.
  • [86] Maleksaeedi S, Eng H, Wiria F, Ha T, He Z. Property enhancement of 3D-printed alumina ceramics using vacuum infiltration. J Mater Process Technol 2014; 214:1301-1306.
  • [87] Uçar Y, Aysan Meriç İ, Ekren O. Layered manufacturing of dental ceramics: fracture mechanics, microstructure, and elemental composition of lithography‐sintered ceramic. J Prosthodont 2019; 28:e310-e318.

Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry

Year 2021, Volume: 11 Issue: 1, 182 - 190, 31.03.2021
https://doi.org/10.33808/clinexphealthsci.786018

Abstract

Computer Aided Design-Computer Aided Manufacturing technologies (CAD-CAM) are often used in dentistry. Along with technological developments, techniques of additive manufacturing (3D) which has a lot of advantages have been improved and found a field of practice.
Today, metals and metal alloys, polymer and composite, ceramic materials are produced and used through additive manufacturing techniques. With additive manufacturing in dentistry, dental implants, prosthetic restorations, maxillofacial implants and prostheses, dental models, custom trays, occlusal splints, orthodontic models and devices can be produced and used in tissue engineering. The aim of this study is to profile and evaluate the additive manufacturing methods, materials, and application fields in dentistry.

References

  • [1] Galante R, Figueiredo-Pina C G, Serro A P. Additive manufacturing of ceramics for dental applications: A review. Dent Mater 2019; 35:825-846.
  • [2] Sevmez H, Gungor M B, Yılmaz H. Rezin Matriks Seramikler. Turkiye Klinikleri J Dental Sci. 2019; 25:351-359. (Turkish)
  • [3] Baroudi K, Ibraheem S N. Assessment of Chair-side Computer-Aided Design and Computer-Aided Manufacturing Restorations: A Review of the Literature. J Int Oral Health 2015; 7:96-104.
  • [4] Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 2008; 204:505-511.
  • [5] Ersu B, Yüzügüllü B, Canay Ş. Sabit restorasyonlarda CAD/CAM uygulamaları. Hacettepe üniversitesi diş hekimliği fakültesi dergisi 2008; 32:58-72. (Turkish)
  • [6] Rekow E D, Erdman A G, Riley D R, Klamecki B. CAD/CAM for dental restorations--some of the curious challenges. IEEE Trans Biomed Eng 1991; 38:314-318.
  • [7] Abduo J, Lyons K, Bennamoun M. Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams. Int J Dent 2014; 2014:783948.
  • [8] Van Noort R. The Future of Dental Devices is Digital. Dent Mater 2012; 28:3-12.
  • [9] Fu L, Engqvist H, Xia W. Glass-Ceramics in Dentistry: A Review. Materials (Basel) 2020; 13:1049.
  • [10] Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci 2018; 93:45-111.
  • [11] Ligon S C, Liska R, Stampfl J, Gurr M, Mulhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017; 117:10212-10290.
  • [12] Ngo T D, Kashani A, Imbalzano G, Nguyen K T Q, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng 2018; 143:172-196.
  • [13] Bhargav A, Sanjairaj V, Rosa V, Feng L, Yh J. Applications of Additive Manufacturing in Dentistry: A review. J Biomed Mater Res B Appl Biomater 2017; 106:2058, 2064.
  • [14] Charles W. Hull A, Calif. , Apparatus for production of three-dimensional objects by stereolithography, in Google Patents. 1986.
  • [15] Revilla-Leon M, Ozcan M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J Prosthodont 2019; 28:146-158.
  • [16] Javaid M H A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res 2019; 9:179-185.
  • [17] Petrovic V, Vicente Haro Gonzalez J, Jordá Ferrando O, Delgado Gordillo J, Ramón Blasco Puchades J, Portolés Griñan L. Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res 2011; 49:1061-1079.
  • [18] L. H, Digital Micromirror Device, in Google Patents. 1999.
  • [19] ASTM, in Standard terminology for additive manufacturing - general principles and terminology. 2009, Committee F42 on Additive Manufacturing Technologies, : West Conshohocken, PA.
  • [20] Revilla-León M, Meyer M J, Özcan M. Metal additive manufacturing technologies: literature review of current status and prosthodontic applications. Int J Comput Dent 2019; 22:55-67.
  • [21] Butler J. Using selective laser sintering for manufacturing. Assembly Autom 2011; 31:212-219.
  • [22] Mazzoli A, Ferretti C, Gigante A, Salvolini E, Mattioli-Belmonte M. Selective Laser Sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering. Rapid Prototyp. J 2015; 21:386-392.
  • [23] Alsalla H H, Smith C, Hao L. The effect of different build orientations on the consolidation, tensile and fracture toughness properties of direct metal laser sintering Ti-6Al-4V. Rapid Prototyp. J 2018; 24:276-284.
  • [24] Salmi M, Tuomi J, Paloheimo K S, Björkstrand R, Paloheimo M, Salo J, Kontio R, Mesimäki K, Mäkitie A A. Patient‐specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyp. J 2012; 18:209-214.
  • [25] Kruth J-P, Mercelis P, Vaerenbergh J V, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J 2005; 11:26-36.
  • [26] Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tools Manuf 2006; 46:1188-1193.
  • [27] Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J 2007; 13:196-203.
  • [28] Niñerola V P R. Powder recyclability in electron beam melting for aeronautical use. Aircr Eng Aerosp Tec 2015; 87:147-155.
  • [29] Taylor A C, Beirne S, Alici G, Wallace G G. System and process development for coaxial extrusion in fused deposition modelling. Rapid Prototyp. J 2017; 23:543-550.
  • [30] Kritchman E M, Zeytoun I, Rapid prototyping apparatus. 2011, Google Patents.
  • [31] Napadensky E, Compositions and methods for use in three dimensional model printing. 2003, Google Patents.
  • [32] Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent 2014; 112:1088-1095.e1.
  • [33] Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: A preliminary experience in digital workflow. J Prosthet Dent 2018; 120:303-308.
  • [34] Venezia P, Muzio L L, De Furia C, Torsello F. Digital manufacturing of occlusal splint: From intraoral scanning to 3D printing. J. Osseointegration 2019; 11:535-539.
  • [35] Chen H, Yang X, Chen L, Wang Y, Sun Y. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays. Sci Rep 2016; 6:19207.
  • [36] Liu Q, Leu M C, Schmitt S M. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 2006; 29:317-335.
  • [37] Serra T, Planell J A, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 2013; 9:5521-5230. [38] Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie Y. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016; 83:127-141.
  • [39] Osman R B, van der Veen A J, Huiberts D, Wismeijer D, Alharbi N. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs. J Mech Behav Biomed Mater 2017; 75:521-528.
  • [40] Tunchel S, Blay A, Kolerman R. Mijiritsky E, Shibli J. A. 3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-Up. Int. J. Dent 2016; 2016:1-9.
  • [41] Ahlholm P, Sipilä K, Vallittu P, Kotiranta U, Lappalainen R. Accuracy of inlay and onlay restorations based on 3D printing or milling technique - a pilot study. The European journal of prosthodontics and restorative dentistry 2019; 27:56-64.
  • [42] Tahayeri A, Morgan M, Fugolin A P, Bompolaki D, Athirasala A, Pfeifer C S, Ferracane J L, Bertassoni L E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018; 34:192-200.
  • [43] Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015; 219:521-529.
  • [44] Lin W S, Harris B T, Pellerito J, Morton D. Fabrication of an interim complete removable dental prosthesis with an in-office digital light processing three-dimensional printer: A proof-of-concept technique. J Prosthet Dent 2018; 120:331-334.
  • [45] Kalberer N, Mehl A, Schimmel M, Müller F, Srinivasan M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: An in vitro evaluation of trueness. J Prosthet Dent 2019; 121:637-643.
  • [46] Wilkes J, Hagedorn Y C, Meiners W, Wissenbach K. Additive manufacturing of ZrO2‐Al2O3 ceramic components by selective laser melting. Rapid Prototyp. J 2013; 19:51-57.
  • [47] Farré-Guasch E, Wolff J, Helder M N, Schulten E A, Forouzanfar T, Klein-Nulend J. Application of Additive Manufacturing in Oral and Maxillofacial Surgery. J Oral Maxillofac Surg 2015; 73:2408-2418.
  • [48] Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Annals of maxillofacial surgery 2014; 4:9-18.
  • [49] Scolozzi P. Maxillofacial reconstruction using polyetheretherketone patient-specific implants by "mirroring" computational planning. Aesthetic Plast Surg 2012; 36:660-665.
  • [50] Javaid M, Haleem A. Additive manufacturing applications in medical cases: A literature based review. Alexandria J. Med 2018; 54:411-422.
  • [51] Alshawaf B, Weber H-P, Finkelman M, El Rafie K, Kudara Y, Papaspyridakos P. Accuracy of printed casts generated from digital implant impressions versus stone casts from conventional implant impressions: A comparative in vitro study. Clin Oral Implants Res 2018; 29:835-842.
  • [52] Choi J J E, Uy C E, Plaksina P, Ramani R S, Ganjigatti R, Waddell J N. Bond Strength of Denture Teeth to Heat-Cured, CAD/CAM and 3D Printed Denture Acrylics. J Prosthodont 2020; 29:415-421.
  • [53] Turbush S K, Turkyilmaz I. Accuracy of three different types of stereolithographic surgical guide in implant placement: an in vitro study. J Prosthet Dent 2012; 108:181-188.
  • [54] Kim T, Lee S, Kim G B, Hong D, Kwon J, Park J-W, Kim N. Accuracy of a simplified 3D-printed implant surgical guide. J Prosthet Dent 2019; S0022-3913:30416.
  • [55] Zhao Y, Li Y, Mao S, Sun W, Yao R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 2015; 7:045002.
  • [56] Shuai C, Gao C, Nie Y, Hu H, Zhou Y, Peng S. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology 2011; 22:285703.
  • [57] Jindal P, Juneja M, Siena F L, Bajaj D, Breedon P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofacial Orthop 2019; 156:694-701.
  • [58] Barazanchi A, Li K C, Al-Amleh B, Lyons K, Waddell J N. Additive Technology: Update on Current Materials and Applications in Dentistry. J Prosthodont 2017; 26:156-163.
  • [59] Kanazawa M, Iwaki M, Minakuchi S, Nomura N. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting. J Prosthet Dent 2014; 112:1441-1447.
  • [60] Ucar Y, Akova T, Akyil M S, Brantley W A. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J Prosthet Dent 2009; 102:253-259.
  • [61] Wang H, Feng Q, Li N, Xu S. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques. J Prosthet Dent 2016; 116:916-923.
  • [62] Revilla-León M, Ceballos L, Martínez-Klemm I, Özcan M. Discrepancy of complete-arch titanium frameworks manufactured using selective laser melting and electron beam melting additive manufacturing technologies. J Prosthet Dent 2018; 120:942-947.
  • [63] Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: A review and prospective. Compos B Eng 2017; 110:442-458.
  • [64] Quan C, Han B, Hou Z, Zhang Q, Tian X, Lu T. 3d printed continuous fiber reinforced composite auxetic honeycomb structures. Compos B Eng 2020; 187:107858.
  • [65] Kuo C-C, Liu L-C, Teng W-F, Chang H-Y, Chien F-M, Liao S-J, Kuo W-F, Chen C-M. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos B Eng 2016; 86:36-39.
  • [66] Senatov F S, Niaza K V, Zadorozhnyy M Y, Maksimkin A V, Kaloshkin S D, Estrin Y Z. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 2016; 57:139-148.
  • [67] Jindal S K, Sherriff M, Waters M G, Smay J E, Coward T J. Development of a 3D printable maxillofacial silicone: Part II. Optimization of moderator and thixotropic agent. J Prosthet Dent 2018; 119:299-304.
  • [68] Chaar M S, Witkowski S, Strub J R, Att W. Effect of veneering technique on the fracture resistance of zirconia fixed dental prostheses. J Oral Rehabil 2013; 40:51-59.
  • [69] Bengisu M, Engineering ceramics. Springer Science & Business Media. 2013:104-136.
  • [70] Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, Liu C, Li Y, Wang P, He Y. 3D printing of ceramics: A review. J Eur Ceram Soc 2019; 39:661-687.
  • [71] Marcus H L, Beaman J J, Barlow J W, Bourell D L. Solid freeform fabrication-powder processing. Am. Ceram. Soc. Bull 1990; 69:1030-1031. [72] Sachs E, Cima M, Cornie J. Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP annals 1990; 39:201-204.
  • [73] Travitzky N, Bonet A, Dermeik B, Fey T, Filbert‐Demut I, Schlier L, Schlordt T, Greil P. Additive manufacturing of ceramic‐based materials. Adv. Eng. Mater 2014; 16:729-754.
  • [74] Pfaffinger M, Mitteramskogler G, Gmeiner R, Stampfl J. Thermal debinding of ceramic-filled photopolymers. Mater. Sci. Forum 2015; 825:75-81.
  • [75] Al-Sanabani F, Madfa A, Al-Qudaimi N. Alumina ceramic for dental applications: A review article. Am. J. Mater. Sci 2014; 1:26-34.
  • [76] Mao L, Kaizer M R, Zhao M, Guo B, Song Y F, Zhang Y. Graded Ultra-Translucent Zirconia (5Y-PSZ) for Strength and Functionalities. J Dent Res 2018; 97:1222-1228.
  • [77] Gracis S, Thompson V P, Ferencz J L, Silva N R, Bonfante E A. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont 2015; 28:227-35.
  • [78] Zhang Y, Lawn B R. Novel Zirconia Materials in Dentistry. J Dent Res 2018; 97:140-147.
  • [79] Hisbergues M, Vendeville S, Vendeville P. Zirconia: Established facts and perspectives for a biomaterial in dental implantology. J Biomed Mater Res B Appl Biomater 2009; 88:519-529.
  • [80] Josset Y, Oum'Hamed Z, Zarrinpour A, Lorenzato M, Adnet J J, Laurent-Maquin D. In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. J Biomed Mater Res 1999; 47:481-493.
  • [81] Shin H, Ko H, Kim M. Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements. Restor Dent Endod 2016; 41:167-175.
  • [82] Özkol E, Zhang W, Ebert J, Telle R. Potentials of the “Direct Inkjet Printing” Method for Manufacturing 3Y-TZP Based Dental Restorations. Journal of the European Ceramic Society 2012; 32:2193–2201.
  • [83] Lian Q, Sui W, Wu X, Yang F, Yang S. Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography. Rapid Prototyp. J 2018; 24:114-119.
  • [84] Cheng Y C, Lin D H, Jiang C P, Lin Y M. Dental implant customization using numerical optimization design and 3‐dimensional printing fabrication of zirconia ceramic. Int J Numer Method Biomed Eng 2017; 33:e2820.
  • [85] Anssari Moin D, Hassan B, Wismeijer D. A novel approach for custom three-dimensional printing of a zirconia root analogue implant by digital light processing. Clin Oral Implants Res 2017; 28:668-670.
  • [86] Maleksaeedi S, Eng H, Wiria F, Ha T, He Z. Property enhancement of 3D-printed alumina ceramics using vacuum infiltration. J Mater Process Technol 2014; 214:1301-1306.
  • [87] Uçar Y, Aysan Meriç İ, Ekren O. Layered manufacturing of dental ceramics: fracture mechanics, microstructure, and elemental composition of lithography‐sintered ceramic. J Prosthodont 2019; 28:e310-e318.
There are 85 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review
Authors

Elif Demiralp 0000-0001-8156-8738

Gülsüm Doğru 0000-0002-5803-9579

Handan Yılmaz 0000-0001-5809-7018

Publication Date March 31, 2021
Submission Date August 26, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Demiralp, E., Doğru, G., & Yılmaz, H. (2021). Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry. Clinical and Experimental Health Sciences, 11(1), 182-190. https://doi.org/10.33808/clinexphealthsci.786018
AMA Demiralp E, Doğru G, Yılmaz H. Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry. Clinical and Experimental Health Sciences. March 2021;11(1):182-190. doi:10.33808/clinexphealthsci.786018
Chicago Demiralp, Elif, Gülsüm Doğru, and Handan Yılmaz. “Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry”. Clinical and Experimental Health Sciences 11, no. 1 (March 2021): 182-90. https://doi.org/10.33808/clinexphealthsci.786018.
EndNote Demiralp E, Doğru G, Yılmaz H (March 1, 2021) Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry. Clinical and Experimental Health Sciences 11 1 182–190.
IEEE E. Demiralp, G. Doğru, and H. Yılmaz, “Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry”, Clinical and Experimental Health Sciences, vol. 11, no. 1, pp. 182–190, 2021, doi: 10.33808/clinexphealthsci.786018.
ISNAD Demiralp, Elif et al. “Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry”. Clinical and Experimental Health Sciences 11/1 (March 2021), 182-190. https://doi.org/10.33808/clinexphealthsci.786018.
JAMA Demiralp E, Doğru G, Yılmaz H. Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry. Clinical and Experimental Health Sciences. 2021;11:182–190.
MLA Demiralp, Elif et al. “Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry”. Clinical and Experimental Health Sciences, vol. 11, no. 1, 2021, pp. 182-90, doi:10.33808/clinexphealthsci.786018.
Vancouver Demiralp E, Doğru G, Yılmaz H. Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry. Clinical and Experimental Health Sciences. 2021;11(1):182-90.

14639   14640