Research Article
BibTex RIS Cite
Year 2021, Volume: 11 Issue: 2, 296 - 301, 30.06.2021
https://doi.org/10.33808/clinexphealthsci.764833

Abstract

Amaç: Bu çalışmanın amacı, Behçet Hastalığı (BH) tanısı almış hastalarda fovea kalınlığı ve koroid kalınlığını değerlendirmektir.
Gereç ve Yöntemler: Bu prospektif kesitsel çalışmaya toplam 60 hasta dahil edildi. Hastalar iki gruba ayrıldı. BH tanısı alan 30 hasta (Grup 1) ve 30 sağlıklı kontrol (Grup 2) çalışmaya dahil edildi. Her iki grupta detaylı oftalmolojik muayene yapıldı ve fovea kalınlığı ve makula koroid kalınlığı Spektral Domain Optik Koherens Tomografi (SD-OKT) ile ölçüldü. Koroid kalınlığını ölçmek için Enhanced Depth Imaging OKT (EDI-OKT) tekniği kullanıldı.
Bulgular: BH grubunda ortalama foveal kalınlık 216.06 ± 53.14 μm ve ortalama subfoveal koroid kalınlığı 363.21 ± 85.22 μm idi. Sağlıklı kontrollerde ortalama foveal kalınlık ve subfoveal koroid kalınlığı sırasıyla 211.65 ± 16.60 μm ve 352.83 ± 87.11 μm idi. BH grubu ile kontrol grubu arasında foveal ve subfoveal koroid kalınlığı açısından istatistiksel anlamlılık yoktu. Ancak OKT'de Elipsoid Zone yapısının anatomik deformasyonu görme keskinliği üzerine en fazla etkiye sahipti (p = 0,001).
Sonuç: Bu çalışma, Behçet hastalarında fovea kalınlığı ve makula koroid kalınlığı açısından sağlıklı kişilerle karşılaştırıldığında istatistiksel olarak anlamlı bir fark olmadığını göstermektedir.

Supporting Institution

Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri

Project Number

T-622

References

  • [1] Behcet H. Uber rezidivierende, aphthose, durchein Virus verusachte Gaschwure am Mund, am Auge und an den Genitalien. Dermat Wochsch. 1937; 105: 1152-7.
  • [2] Mittal A, Velaga SB, Falavarjani KG, Nittala MG and Sadda SR. Choroidal thickness in non-ocular Behçet's disease - A spectral-domain OCT study. Journal of current ophthalmology. 2017; 29: 210-3.
  • [3] Charteris D, Barton K, McCartney A and Lightman S. CD4+ Lymphocyte Involvement in Ocular Behclet's Disease. Autoimmunity. 1992; 12: 201-6.
  • [4] Gürler A, Boyvat A and Türsen U. Clinical manifestations of Behçet’s disease: an analysis of 2147 patients. Yonsei Med J. 1997; 38: 423-7.
  • [5] Kitaichi N, Miyazaki A, Iwata D, Ohno S, Stanford MR and Chams H. Ocular features of Behçet’s disease: an international collaborative study. British Journal of Ophthalmology. 2007; 91: 1579-82.
  • [6] Özdal P, Ortac S, Taşkintuna I and Firat E. Posterior segment involvement in ocular Behçet's disease. European journal of ophthalmology. 2002; 12: 424-31.
  • [7] Tugal-Tutkun I, Onal S, Altan-Yaycioglu R, Altunbas HH and Urgancioglu M. Uveitis in Behçet disease: an analysis of 880 patients. American journal of ophthalmology. 2004; 138: 373-80.
  • [8] Kim HB. Ophthalmologic manifestation of BehÇ et's disease. Yonsei medical journal. 1997; 38: 390-4.
  • [9] Atmaca L and Sonmez P. Fluorescein and indocyanine green angiography findings in Behçet’s disease. British journal of ophthalmology. 2003; 87: 1466-8.
  • [10] Gedik Ş, Akova YA, Yilmaz G and Bozbeyoğlu S. ORIGINAL ARTICLE Indocyanine Green and Fundus Fluorescein Angiographic Findings in Patients with Active Ocular Behçet's Disease. Ocular immunology and inflammation. 2005; 13: 51-8.
  • [11] Kansu T and Kadayifcilar S. Visual aspects of Behçet’s disease. Current Neurology and Neuroscience Reports. 2005; 5: 382-8.
  • [12] Klaeger AJ, Tran VT, Hiroz CA, Morisod L and Herbort CP. Use of ultrasound biomicroscopy, indocyanine green angiography and HLA-B51 testing as adjunct methods in the appraisal of Behcet's uveitis. International ophthalmology. 2004; 25: 57-63.
  • [13] Tekeli O and Özdemir Ö. Heidelberg retina tomograph in ocular Behçet's disease. Eye. 2004; 18: 143-6.
  • [14] Alm A and Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Experimental eye research. 1973; 15: 15-29.
  • [15] Laviers H and Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefe's Archive for Clinical and Experimental Ophthalmology. 2014; 252: 1871-83.
  • [16] Chung SE, Kang SW, Lee JH and Kim YT. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology. 2011; 118: 840-5.
  • [17] Fujiwara T, Imamura Y, Margolis R, Slakter JS and Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. American journal of ophthalmology. 2009; 148: 445-50.
  • [18] Imamura Y, Fujiwara T, Margolis R and Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009; 29: 1469-73.
  • [19] Margolis R and Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. American journal of ophthalmology. 2009; 147: 811-5.
  • [20] Nakai K, Gomi F, Ikuno Y, et al. Choroidal observations in Vogt–Koyanagi–Harada disease using high-penetration optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology. 2012; 250: 1089-95.
  • [21] Park UC, Cho IH, Moon SW and Yu HG. Long-term change of subfoveal choroidal thickness in Behçet’s Disease patients with posterior uveitis. Ocular immunology and inflammation. 2018; 26: 397-405.
  • [22] Disease CfDoBs. International study group for Behcet's disease. Lancet. 1990; 335: 1078-80.
  • [23] Yazici H, Başaran G, Hamuryudan V, et al. The ten-year mortality in Behçet's syndrome. Rheumatology. 1996; 35: 139-41.
  • [24] Alwassia AA, Adhi M, Zhang JY, et al. Exercise-induced acute changes in systolic blood pressure do not alter choroidal thickness as measured by a portable spectral-domain optical coherence tomography device. Retina (Philadelphia, Pa). 2013; 33: 160.
  • [25] Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R and Kinoshita S. Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefe's Archive for Clinical and Experimental Ophthalmology. 2011; 249: 1123-8.
  • [26] Brown JS, Flitcroft DI, Ying G-s, et al. In vivo human choroidal thickness measurements: evidence for diurnal fluctuations. Investigative ophthalmology & visual science. 2009; 50: 5-12.
  • [27] Tan CS, Ouyang Y, Ruiz H and Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Investigative ophthalmology & visual science. 2012; 53: 261-6.
  • [28] Kim M, Kim H, Kwon HJ, Kim SS, Koh HJ and Lee SC. Choroidal thickness in Behcet's uveitis: an enhanced depth imaging-optical coherence tomography and its association with angiographic changes. Investigative ophthalmology & visual science. 2013; 54: 6033-9.
  • [29] Coskun E, Gurler B, Pehlivan Y, et al. Enhanced depth imaging optical coherence tomography findings in Behcet disease. Ocular immunology and inflammation. 2013; 21: 440-5.
  • [30] Takeuchi M, Iwasaki T, Kezuka T, et al. Functional and morphological changes in the eyes of Behcet’s patients with uveitis. Acta Ophthalmologica. 2010; 88: 257-62.
  • [31] Landa G, Gentile RC, Garcia PM, Muldoon TO and Rosen RB. External limiting membrane and visual outcome in macular hole repair: spectral domain OCT analysis. Eye (London, England). 2012; 26: 61-9.
  • [32] Wakabayashi T, Oshima Y, Fujimoto H, et al. Foveal microstructure and visual acuity after retinal detachment repair: imaging analysis by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116: 519-28.
  • [33] Domalpally A, Peng Q, Danis R, Blodi B, Scott IU and Ip M. Association of outer retinal layer morphology with visual acuity in patients with retinal vein occlusion: SCORE Study Report 13. Eye (London, England). 2012; 26: 919-24.
  • [34] Unoki N, Nishijima K, Kita M, Hayashi R and Yoshimura N. Structural changes of fovea during remission of Behçet's disease as imaged by spectral domain optical coherence tomography. Eye. 2010; 24: 969-75.
  • [35] Guyer D, Schachat A and Green W. The choroid: structural considerations. Retina. Philadelphia, PA: Elsevier, 2006.
  • [36] Karampelas M, Sim DA, Keane PA, et al. Choroidal assessment in idiopathic panuveitis using optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology. 2013; 251: 2029-36.
  • [37] Iaccarino G, Cennamo G, Forte R and Cennamo G. Evaluation of posterior pole with echography and optical coherence tomography in patients with Behçet’s disease. Ophthalmologica. 2009; 223: 250-5.
  • [38] Charteris DG, Champ C, Rosenthal AR and Lightman SL. Behçet's disease: activated T lymphocytes in retinal perivasculitis. British journal of ophthalmology. 1992; 76: 499-501.
  • [39] George RK, Chan C-C, Whitcup SM and Nussenblatt RB. Ocular immunopathology of Behçet's disease. Survey of ophthalmology. 1997; 42: 157-62.
  • [40] Mullaney J and Collum L. Ocular vasculitis in Behçet's disease. International ophthalmology. 1985; 7: 183-91.
  • [41] BOZZONI-PANTALEONI F, GHARBIYA M, PIRRAGLIA MP, ACCORINTI M and PIVETTI-PEZZI P. Indocyanine green angiographic findings in Behçet disease. Retina. 2001; 21: 230-6.
  • [42] Matsuo T, Sato Y, Shiraga F, Shiragami C and Tsuchida Y. Choroidal abnormalities in Behçet disease observed by simultaneous indocyanine green and fluorescein angiography with scanning laser ophthalmoscopy. Ophthalmology. 1999; 106: 295-300.
  • [43] Herbort CP, LeHoang P and Guex-Crosier Y. Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. Ophthalmology. 1998; 105: 432-40.
  • [44] Matsuda N, Ogura Y, Nishiwaki H, et al. Visualization of leukocyte dynamics in the choroid with indocyanine green. Investigative ophthalmology & visual science. 1996; 37: 2228-33.
  • [45] Klaeger A, TRAN TV, Hiroz C-A, Morisod L and Herbort CP. Indocyanine green angiography in Behçet's uveitis. Retina. 2000; 20: 309-14.
  • [46] Akçar N, Göktekin F, Özer A and Korkmaz C. Doppler sonography of ocular and carotid arteries in Behçet patients. Journal of Clinical Ultrasound. 2010; 38: 486-92.
  • [47] Kim M, Kim SS, Kwon HJ, Koh HJ and Lee SC. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study. Investigative ophthalmology & visual science. 2012; 53: 7710-7.

Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet's Disease

Year 2021, Volume: 11 Issue: 2, 296 - 301, 30.06.2021
https://doi.org/10.33808/clinexphealthsci.764833

Abstract

Objective: The aim of this study is to evaluate foveal thickness and macular choroidal thickness on patients who were diagnosed with Behcet’s Disease (BD).
Materials and

Methods: A total of 60 patients were included in this prospective cross-sectional study. Patients were divided into two groups. Group 1 consisted of 30 patients who were diagnosed with BD and Group 2 consisted of 30 healthy controls. Detailed ophthalmological examination was performed on both groups and foveal thickness and macular choroidal thickness were measured with Spectral Domain Optical Coherence Tomography (SD-OCT). To measure the choroidal thickness enhanced depth imaging OCT (EDI-OCT) technique was used.

Results: Mean foveal thickness in patients with BD was 216.06 ± 53.14 μm and mean subfoveal choroidal thickness was 363.21 ± 85.22 μm. Mean foveal thickness and subfoveal choroidal thickness in healthy controls was 211.65 ± 16.60 μm and 352.83 ± 87.11 μm respectively. There was no statistical significance between patients with BD and control group regarding foveal and subfoveal choroidal thickness. However, anatomical deformation of Elipsoid Zone structure in OCT had the most effect on visual acuity (p=0,001).


Conclusion:
This study shows that there was no statistically significant difference in terms of foveal thickness and macular choroidal thickness in patients with BD.

Project Number

T-622

References

  • [1] Behcet H. Uber rezidivierende, aphthose, durchein Virus verusachte Gaschwure am Mund, am Auge und an den Genitalien. Dermat Wochsch. 1937; 105: 1152-7.
  • [2] Mittal A, Velaga SB, Falavarjani KG, Nittala MG and Sadda SR. Choroidal thickness in non-ocular Behçet's disease - A spectral-domain OCT study. Journal of current ophthalmology. 2017; 29: 210-3.
  • [3] Charteris D, Barton K, McCartney A and Lightman S. CD4+ Lymphocyte Involvement in Ocular Behclet's Disease. Autoimmunity. 1992; 12: 201-6.
  • [4] Gürler A, Boyvat A and Türsen U. Clinical manifestations of Behçet’s disease: an analysis of 2147 patients. Yonsei Med J. 1997; 38: 423-7.
  • [5] Kitaichi N, Miyazaki A, Iwata D, Ohno S, Stanford MR and Chams H. Ocular features of Behçet’s disease: an international collaborative study. British Journal of Ophthalmology. 2007; 91: 1579-82.
  • [6] Özdal P, Ortac S, Taşkintuna I and Firat E. Posterior segment involvement in ocular Behçet's disease. European journal of ophthalmology. 2002; 12: 424-31.
  • [7] Tugal-Tutkun I, Onal S, Altan-Yaycioglu R, Altunbas HH and Urgancioglu M. Uveitis in Behçet disease: an analysis of 880 patients. American journal of ophthalmology. 2004; 138: 373-80.
  • [8] Kim HB. Ophthalmologic manifestation of BehÇ et's disease. Yonsei medical journal. 1997; 38: 390-4.
  • [9] Atmaca L and Sonmez P. Fluorescein and indocyanine green angiography findings in Behçet’s disease. British journal of ophthalmology. 2003; 87: 1466-8.
  • [10] Gedik Ş, Akova YA, Yilmaz G and Bozbeyoğlu S. ORIGINAL ARTICLE Indocyanine Green and Fundus Fluorescein Angiographic Findings in Patients with Active Ocular Behçet's Disease. Ocular immunology and inflammation. 2005; 13: 51-8.
  • [11] Kansu T and Kadayifcilar S. Visual aspects of Behçet’s disease. Current Neurology and Neuroscience Reports. 2005; 5: 382-8.
  • [12] Klaeger AJ, Tran VT, Hiroz CA, Morisod L and Herbort CP. Use of ultrasound biomicroscopy, indocyanine green angiography and HLA-B51 testing as adjunct methods in the appraisal of Behcet's uveitis. International ophthalmology. 2004; 25: 57-63.
  • [13] Tekeli O and Özdemir Ö. Heidelberg retina tomograph in ocular Behçet's disease. Eye. 2004; 18: 143-6.
  • [14] Alm A and Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Experimental eye research. 1973; 15: 15-29.
  • [15] Laviers H and Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefe's Archive for Clinical and Experimental Ophthalmology. 2014; 252: 1871-83.
  • [16] Chung SE, Kang SW, Lee JH and Kim YT. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology. 2011; 118: 840-5.
  • [17] Fujiwara T, Imamura Y, Margolis R, Slakter JS and Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. American journal of ophthalmology. 2009; 148: 445-50.
  • [18] Imamura Y, Fujiwara T, Margolis R and Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009; 29: 1469-73.
  • [19] Margolis R and Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. American journal of ophthalmology. 2009; 147: 811-5.
  • [20] Nakai K, Gomi F, Ikuno Y, et al. Choroidal observations in Vogt–Koyanagi–Harada disease using high-penetration optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology. 2012; 250: 1089-95.
  • [21] Park UC, Cho IH, Moon SW and Yu HG. Long-term change of subfoveal choroidal thickness in Behçet’s Disease patients with posterior uveitis. Ocular immunology and inflammation. 2018; 26: 397-405.
  • [22] Disease CfDoBs. International study group for Behcet's disease. Lancet. 1990; 335: 1078-80.
  • [23] Yazici H, Başaran G, Hamuryudan V, et al. The ten-year mortality in Behçet's syndrome. Rheumatology. 1996; 35: 139-41.
  • [24] Alwassia AA, Adhi M, Zhang JY, et al. Exercise-induced acute changes in systolic blood pressure do not alter choroidal thickness as measured by a portable spectral-domain optical coherence tomography device. Retina (Philadelphia, Pa). 2013; 33: 160.
  • [25] Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R and Kinoshita S. Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefe's Archive for Clinical and Experimental Ophthalmology. 2011; 249: 1123-8.
  • [26] Brown JS, Flitcroft DI, Ying G-s, et al. In vivo human choroidal thickness measurements: evidence for diurnal fluctuations. Investigative ophthalmology & visual science. 2009; 50: 5-12.
  • [27] Tan CS, Ouyang Y, Ruiz H and Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Investigative ophthalmology & visual science. 2012; 53: 261-6.
  • [28] Kim M, Kim H, Kwon HJ, Kim SS, Koh HJ and Lee SC. Choroidal thickness in Behcet's uveitis: an enhanced depth imaging-optical coherence tomography and its association with angiographic changes. Investigative ophthalmology & visual science. 2013; 54: 6033-9.
  • [29] Coskun E, Gurler B, Pehlivan Y, et al. Enhanced depth imaging optical coherence tomography findings in Behcet disease. Ocular immunology and inflammation. 2013; 21: 440-5.
  • [30] Takeuchi M, Iwasaki T, Kezuka T, et al. Functional and morphological changes in the eyes of Behcet’s patients with uveitis. Acta Ophthalmologica. 2010; 88: 257-62.
  • [31] Landa G, Gentile RC, Garcia PM, Muldoon TO and Rosen RB. External limiting membrane and visual outcome in macular hole repair: spectral domain OCT analysis. Eye (London, England). 2012; 26: 61-9.
  • [32] Wakabayashi T, Oshima Y, Fujimoto H, et al. Foveal microstructure and visual acuity after retinal detachment repair: imaging analysis by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116: 519-28.
  • [33] Domalpally A, Peng Q, Danis R, Blodi B, Scott IU and Ip M. Association of outer retinal layer morphology with visual acuity in patients with retinal vein occlusion: SCORE Study Report 13. Eye (London, England). 2012; 26: 919-24.
  • [34] Unoki N, Nishijima K, Kita M, Hayashi R and Yoshimura N. Structural changes of fovea during remission of Behçet's disease as imaged by spectral domain optical coherence tomography. Eye. 2010; 24: 969-75.
  • [35] Guyer D, Schachat A and Green W. The choroid: structural considerations. Retina. Philadelphia, PA: Elsevier, 2006.
  • [36] Karampelas M, Sim DA, Keane PA, et al. Choroidal assessment in idiopathic panuveitis using optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology. 2013; 251: 2029-36.
  • [37] Iaccarino G, Cennamo G, Forte R and Cennamo G. Evaluation of posterior pole with echography and optical coherence tomography in patients with Behçet’s disease. Ophthalmologica. 2009; 223: 250-5.
  • [38] Charteris DG, Champ C, Rosenthal AR and Lightman SL. Behçet's disease: activated T lymphocytes in retinal perivasculitis. British journal of ophthalmology. 1992; 76: 499-501.
  • [39] George RK, Chan C-C, Whitcup SM and Nussenblatt RB. Ocular immunopathology of Behçet's disease. Survey of ophthalmology. 1997; 42: 157-62.
  • [40] Mullaney J and Collum L. Ocular vasculitis in Behçet's disease. International ophthalmology. 1985; 7: 183-91.
  • [41] BOZZONI-PANTALEONI F, GHARBIYA M, PIRRAGLIA MP, ACCORINTI M and PIVETTI-PEZZI P. Indocyanine green angiographic findings in Behçet disease. Retina. 2001; 21: 230-6.
  • [42] Matsuo T, Sato Y, Shiraga F, Shiragami C and Tsuchida Y. Choroidal abnormalities in Behçet disease observed by simultaneous indocyanine green and fluorescein angiography with scanning laser ophthalmoscopy. Ophthalmology. 1999; 106: 295-300.
  • [43] Herbort CP, LeHoang P and Guex-Crosier Y. Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. Ophthalmology. 1998; 105: 432-40.
  • [44] Matsuda N, Ogura Y, Nishiwaki H, et al. Visualization of leukocyte dynamics in the choroid with indocyanine green. Investigative ophthalmology & visual science. 1996; 37: 2228-33.
  • [45] Klaeger A, TRAN TV, Hiroz C-A, Morisod L and Herbort CP. Indocyanine green angiography in Behçet's uveitis. Retina. 2000; 20: 309-14.
  • [46] Akçar N, Göktekin F, Özer A and Korkmaz C. Doppler sonography of ocular and carotid arteries in Behçet patients. Journal of Clinical Ultrasound. 2010; 38: 486-92.
  • [47] Kim M, Kim SS, Kwon HJ, Koh HJ and Lee SC. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study. Investigative ophthalmology & visual science. 2012; 53: 7710-7.
There are 47 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Erman Bozali 0000-0001-7918-8381

Haydar Erdoğan 0000-0002-9337-6968

Ayhan Dursun This is me 0000-0003-4263-8857

Ayşe Vural Özeç 0000-0001-6236-7252

İlker Toker 0000-0001-5674-1797

Mustafa Arıcı 0000-0002-6350-9723

Project Number T-622
Publication Date June 30, 2021
Submission Date July 8, 2020
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Bozali, E., Erdoğan, H., Dursun, A., Vural Özeç, A., et al. (2021). Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet’s Disease. Clinical and Experimental Health Sciences, 11(2), 296-301. https://doi.org/10.33808/clinexphealthsci.764833
AMA Bozali E, Erdoğan H, Dursun A, Vural Özeç A, Toker İ, Arıcı M. Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet’s Disease. Clinical and Experimental Health Sciences. June 2021;11(2):296-301. doi:10.33808/clinexphealthsci.764833
Chicago Bozali, Erman, Haydar Erdoğan, Ayhan Dursun, Ayşe Vural Özeç, İlker Toker, and Mustafa Arıcı. “Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet’s Disease”. Clinical and Experimental Health Sciences 11, no. 2 (June 2021): 296-301. https://doi.org/10.33808/clinexphealthsci.764833.
EndNote Bozali E, Erdoğan H, Dursun A, Vural Özeç A, Toker İ, Arıcı M (June 1, 2021) Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet’s Disease. Clinical and Experimental Health Sciences 11 2 296–301.
IEEE E. Bozali, H. Erdoğan, A. Dursun, A. Vural Özeç, İ. Toker, and M. Arıcı, “Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet’s Disease”, Clinical and Experimental Health Sciences, vol. 11, no. 2, pp. 296–301, 2021, doi: 10.33808/clinexphealthsci.764833.
ISNAD Bozali, Erman et al. “Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet’s Disease”. Clinical and Experimental Health Sciences 11/2 (June 2021), 296-301. https://doi.org/10.33808/clinexphealthsci.764833.
JAMA Bozali E, Erdoğan H, Dursun A, Vural Özeç A, Toker İ, Arıcı M. Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet’s Disease. Clinical and Experimental Health Sciences. 2021;11:296–301.
MLA Bozali, Erman et al. “Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet’s Disease”. Clinical and Experimental Health Sciences, vol. 11, no. 2, 2021, pp. 296-01, doi:10.33808/clinexphealthsci.764833.
Vancouver Bozali E, Erdoğan H, Dursun A, Vural Özeç A, Toker İ, Arıcı M. Evaluation Of Foveal Thickness And Macular Choroidal Thickness With Optical Coherence Tomography in Behçet’s Disease. Clinical and Experimental Health Sciences. 2021;11(2):296-301.

14639   14640