Research Article
BibTex RIS Cite
Year 2021, Volume: 11 Issue: 3, 564 - 574, 27.09.2021
https://doi.org/10.33808/clinexphealthsci.880368

Abstract

References

  • [1] Ástvaldsdóttir Á, Dagerhamn J, van Dijken JW, Naimi-Akbar A, Sandborgh-Englund G, Tranæus S, Nilsson M. Longevity of posterior resin composite restorations in adults – A systematic review. J Dent 2015;43(8):934-954.
  • [2] Moraschini V, Fai CK, Alto RM, Dos Santos GO. Amalgam and resin composite longevity of posterior restorations: A systematic review and meta-analysis. J Dent 2015;43(9):1043-1050.
  • [3] Kruly PC, Giannini M, Pascotto RC, Tokubo LM, Suga USG, Marques ACR, Terada RSS. Meta-analysis of the clinical behavior of posterior direct resin restorations: Low polymerization shrinkage resin in comparison to methacrylate composite resin. PLoS One 2018;13(2):e0191942.
  • [4] Reddy SN, Jayashankar DN, Nainan M, Shivanna V. The effect of flowable composite lining thickness with various curing techniques on microleakage in class II composite restorations: an in vitro study. J Contemp Dent Pract 2013;14(1):56-60.
  • [5] Lokhande NA, Padmai AS, Rathore VP, Shingane S, Jayashankar DN, Sharma U. Effectiveness of flowable resin composite in reducing microleakage - an in vitro study. J Int Oral Health 2014;6(3):111-114.
  • [6] Randolph LD, Palin WM, Leprince JG. Composition of dental resin-based composites for direct restorations. In: Miletic V, Eds. Dental Composite Materials for Direct Restorations. Belgrade: Springer International Publishing; 2018.p.11–24.
  • [7] Stawarczyk B, Liebermann A, Eichberger M, Güth JF. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed Mater 2015;55:1-11.
  • [8] Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, Danzer R, Lohbauer U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent Mater 2017;33(1):99-109.
  • [9] Park SH, Yoo YJ, Shin YJ, Cho BH, Baek SH. Marginal and internal fit of nano-composite CAD/CAM restorations. Restor Dent Endod 2016;41(1):37-43.
  • [10] Opdam N, Frankenberger R, Magne P. From 'Direct versus indirect' toward an integrated restorative concept in the posterior dentition. Oper Dent 2016;41(S7):27-34.
  • [11] Hickel R, Peschke A, Tyas M, Mjör I, Bayne S, Peters M, Hiller KA, Randall R, Vanherle G, Heintze SD. FDI World Dental Federation - clinical criteria for the evaluation of direct and indirect restorations. Update and clinical examples. J Adhes Dent 2010;12(4):259-272.
  • [12] Manhart J, Chen H, Hamm G, Hickel R. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent 2004;29(5):481-508.
  • [13] Yılmaz EC, Sadeler R. Investigation of three-body wear of dental materials under different chewing cycles. Sci Eng of Compos Mater 2018;25(4):781–787.
  • [14] Kayali F, Kahramanoglu E. Comparison of fracture resistance between two monolithic and one veneered zirconia materials on molar crowns after thermomechanical fatigue. Clin Exp Health Sci 2020;10:320-326.
  • [15] Swapna MU, Koshy S, Kumar A, Nanjappa N, Benjamin S, Nainan MT. Comparing marginal microleakage of three bulk fill composites in class II cavities using confocal microscope: An in vitro study. J Conserv Dent 2015;18(5):409-413.
  • [16] Erdilek D, Dörter C, Koray F, Kunzelmann KH, Efes BG, Gomec Y. Effect of thermo-mechanical load cycling on microleakage in class II ormocer restorations. Eur J Dent 2009;3(3):200-205.
  • [17] Moszner N, Völkel T, Cramer von Clausbruch S, Geiter E, Batliner N, Rheinberger V. Synthesis and hydrolytic condensation of new cross-linking alkoxysilane methacrylates and light-curing composites based upon the condensates. Macromol Mater Eng 2002;287(5):339-347.
  • [18] Garapati S, Das M, Mujeeb A, Dey S, Kiswe SP. Cuspal movement and microleakage in premolar teeth restored with posterior restorative materials. J Int Oral Health 2014;6(5):47-50.
  • [19] Hodobet C, Pangica AM, Florescu A, Hancu V, Biclesanu CF. In vitro Comparative study on the marginal adaptation of direct, semi-direct and indirect composite resins restorations to dentine and dental cementum. Revista de Chimie 2018;69:3138-3145.
  • [20] Kalra S, Singh A, Gupta M, Chadha V. Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent. Contemp Clin Dent 2012;3(1):48-53.
  • [21] Fleming GJ, Hall DP, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with posterior filling materials of varying reported volumetric shrinkage values. J Dent 2005;33(2):139-146.
  • [22] Politi I, McHugh LEJ, Al-Fodeh RS, Fleming GJP. Modification of the restoration protocol for resin-based composite (RBC) restoratives (conventional and bulk fill) on cuspal movement and microleakage score in molar teeth. Dent Mater 2018;34(9):1271-1277.
  • [23] Yazici AR, Celik C, Ozgünaltay G. Microleakage of different resin composite types. Quintessence Int 2004;35(10):790-794.
  • [24] Habib SR, Alotaibi A, Al Hazza N, Allam Y, AlGhazi M. Two-body wear behavior of human enamel versus monolithic zirconia, lithium disilicate, ceramometal and composite resin. J Adv Prosthodont 2019;11(1):23-31.
  • [25] Takahashi R, Nikaido T, Tagami J, Hickel R, Kunzelmann KH. Contemporary adhesives: Marginal adaptation and microtensile bond strength of class II composite restorations. Am J Dent 2012;25(3):181-188.
  • [26] Gamarra VSS, Borges GA, Júnior LHB, Spohr AM. Marginal adaptation and microleakage of a bulk-fill composite resin photopolymerized with different techniques. Odontology 2018;106(1):56-63.
  • [27] Nakabayashi N, Ashizawa M, Nakamura M. Identification of a resin-dentin hybrid layer in vital human dentin created in vivo: durable bonding to vital dentin. Quintessence Int 1992;23(2):135-141.
  • [28] Pongprueksa P, Senawongse P, Vongphan N. Effect of dentinal tubule orientation on the modulus of elasticity of resin-infiltrated demineralized dentin. Dent Mater J 2014;33(1):54-58.
  • [29] Nie J, Yap AU, Wang XY. Influence of shrinkage and viscosity of flowable composite liners on cervical microleakage of class II restorations: a micro-ct analysis. Oper Dent 2018;43(6):656-664.
  • [30] Kitayama S, Nasser NA, Pilecki P, Wilson RF, Nikaido T, Tagami J, Watson TF, Foxton RM. Effect of resin coating and occlusal loading on microleakage of class II computer-aided design/computer-aided manufacturing fabricated ceramic restorations: a confocal microscopic study. Acta Odontol Scand 2011;69(3):182-192.
  • [31] Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent Mater 2016;32(8):998-1006.
  • [32] Boaro LC, Gonçalves F, Guimarães TC, Ferracane JL, Versluis A, Braga RR. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater 2010;26(12):1144-1150.
  • [33] Van Ende A, De Munck J, Mine A, Lambrechts P, Van Meerbeek B. Does a low-shrinking composite induce less stress at the adhesive interface? Dent Mater 2010;26(3):215-222.
  • [34] Han SH, Sadr A, Tagami J, Park SH. Internal adaptation of resin composites at two configurations: Influence of polymerization shrinkage and stress. Dent Mater 2016;32(9):1085-1094.
  • [35] Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LE, Martin AA, Ambrosano G, Giannini M. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent Mater 2015;31(12):1542-1551.
  • [36] Soares GP, Ambrosano GM, Lima DA, Marchi GM, Correr-Sobrinho L, Lovadino JR, Aguiar FH. Effect of light polymerization time, mode, and thermal and mechanical load cycling on microleakage in resin composite restorations. Lasers Med Sci 2014;29(2):545-550.
  • [37] Agarwal RS, Hiremath H, Agarwal J, Garg A. Evaluation of cervical marginal and internal adaptation using newer bulk fill composites: An in vitro study. J Conserv Dent 2015;18(1):56-61.
  • [38] Kirsch C, Ender A, Attin T, Mehl A. Trueness of four different milling procedures used in dental CAD/CAM systems. Clin Oral Investig 2017;21(2):551-558.
  • [39] Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res 2016;60(2):72-84.
  • [40] Sandoval MJ, Rocca GT, Krejci I, Mandikos M, Dietschi D. In vitro evaluation of marginal and internal adaptation of class II CAD/CAM ceramic restorations with different resinous bases and interface treatments. Clin Oral Investig 2015;19(9):2167-2177.
  • [41] Shim JS, Lee JS, Lee JY, Choi YJ, Shin SW, Ryu JJ. Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system. J Appl Oral Sci 2015;23(5):515-522.
  • [42] Qian K, Yang X, Feng H, Liu Y. Marginal adaptation of different hybrid ceramic inlays after thermal cycling. Adv Appl Ceram 2020;119(5-6):284-290.
  • [43] Bortolotto T, Onisor I, Krejci I. Proximal direct composite restorations and chairside CAD/CAM inlays: Marginal adaptation of a two-step self-etch adhesive with and without selective enamel conditioning. Clin Oral Investig 2007;11(1):35-43.

Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading

Year 2021, Volume: 11 Issue: 3, 564 - 574, 27.09.2021
https://doi.org/10.33808/clinexphealthsci.880368

Abstract

Objective: The aim of this in vitro study is to compare the microleakage of mesial-occlusal-distal (MOD) composite resin restorations made by using CAD/CAM block and methacrylate/ormocer-based direct resin composites after thermo-mechanical loading.
Methods: Standard 40 noncarious human third mandibular molars were selected for the study. Standardized MOD (3x4x2mm) cavities were prepared on the mesial and distal sides. The gingival margin was placed above the cementoenamel junction (CEJ) on the mesial side and below the CEJ on the distal side. The prepared samples were divided into three experimental groups [indirect group-GrandioBlock (GB), direct-methacrylate group-TetricN-Ceram+TetricN-Flow (T+TF), direct-ormocer group-Admira Fusion+Admira Fusion Flow (A+AF)] and control group [direct-methacrylate group-GrandioSo+GrandioSoFlow (G+GF)] (n=10). After finishing restorations samples were subjected to 50 N to 240.000 thermo-mechanical cycles (5-55°C, for 60 sec) and kept in 0.2% methylene blue. Samples sectioned longitudinally in the mesiodistal direction with a precision cutting device were examined under stereomicroscope at X8 and X25 and microleakage values were scored. In the evaluation of the data, descriptive statistical methods as well as the chi-square test was used for the comparison of qualitative data.
Results: No significant difference was found among the coronal and gingival-enamel microleakage distributions of the groups (p>0.05). A statistically significant difference was observed among the gingival-cementum microleakage distributions of the groups (p=0.003). The distribution of gingival-cement microleakage with the no dye penetration score in the T+TF group was found to be statistically significantly lower than the G+GF and GB groups (p = 0.010, p = 0.001).
Conclusion: Under the limitation of this in vitro study; restoring MOD cavities using different matrix structures of the composites could not eliminate the leakage at the gingival seat under CEJ.

References

  • [1] Ástvaldsdóttir Á, Dagerhamn J, van Dijken JW, Naimi-Akbar A, Sandborgh-Englund G, Tranæus S, Nilsson M. Longevity of posterior resin composite restorations in adults – A systematic review. J Dent 2015;43(8):934-954.
  • [2] Moraschini V, Fai CK, Alto RM, Dos Santos GO. Amalgam and resin composite longevity of posterior restorations: A systematic review and meta-analysis. J Dent 2015;43(9):1043-1050.
  • [3] Kruly PC, Giannini M, Pascotto RC, Tokubo LM, Suga USG, Marques ACR, Terada RSS. Meta-analysis of the clinical behavior of posterior direct resin restorations: Low polymerization shrinkage resin in comparison to methacrylate composite resin. PLoS One 2018;13(2):e0191942.
  • [4] Reddy SN, Jayashankar DN, Nainan M, Shivanna V. The effect of flowable composite lining thickness with various curing techniques on microleakage in class II composite restorations: an in vitro study. J Contemp Dent Pract 2013;14(1):56-60.
  • [5] Lokhande NA, Padmai AS, Rathore VP, Shingane S, Jayashankar DN, Sharma U. Effectiveness of flowable resin composite in reducing microleakage - an in vitro study. J Int Oral Health 2014;6(3):111-114.
  • [6] Randolph LD, Palin WM, Leprince JG. Composition of dental resin-based composites for direct restorations. In: Miletic V, Eds. Dental Composite Materials for Direct Restorations. Belgrade: Springer International Publishing; 2018.p.11–24.
  • [7] Stawarczyk B, Liebermann A, Eichberger M, Güth JF. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed Mater 2015;55:1-11.
  • [8] Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, Danzer R, Lohbauer U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent Mater 2017;33(1):99-109.
  • [9] Park SH, Yoo YJ, Shin YJ, Cho BH, Baek SH. Marginal and internal fit of nano-composite CAD/CAM restorations. Restor Dent Endod 2016;41(1):37-43.
  • [10] Opdam N, Frankenberger R, Magne P. From 'Direct versus indirect' toward an integrated restorative concept in the posterior dentition. Oper Dent 2016;41(S7):27-34.
  • [11] Hickel R, Peschke A, Tyas M, Mjör I, Bayne S, Peters M, Hiller KA, Randall R, Vanherle G, Heintze SD. FDI World Dental Federation - clinical criteria for the evaluation of direct and indirect restorations. Update and clinical examples. J Adhes Dent 2010;12(4):259-272.
  • [12] Manhart J, Chen H, Hamm G, Hickel R. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent 2004;29(5):481-508.
  • [13] Yılmaz EC, Sadeler R. Investigation of three-body wear of dental materials under different chewing cycles. Sci Eng of Compos Mater 2018;25(4):781–787.
  • [14] Kayali F, Kahramanoglu E. Comparison of fracture resistance between two monolithic and one veneered zirconia materials on molar crowns after thermomechanical fatigue. Clin Exp Health Sci 2020;10:320-326.
  • [15] Swapna MU, Koshy S, Kumar A, Nanjappa N, Benjamin S, Nainan MT. Comparing marginal microleakage of three bulk fill composites in class II cavities using confocal microscope: An in vitro study. J Conserv Dent 2015;18(5):409-413.
  • [16] Erdilek D, Dörter C, Koray F, Kunzelmann KH, Efes BG, Gomec Y. Effect of thermo-mechanical load cycling on microleakage in class II ormocer restorations. Eur J Dent 2009;3(3):200-205.
  • [17] Moszner N, Völkel T, Cramer von Clausbruch S, Geiter E, Batliner N, Rheinberger V. Synthesis and hydrolytic condensation of new cross-linking alkoxysilane methacrylates and light-curing composites based upon the condensates. Macromol Mater Eng 2002;287(5):339-347.
  • [18] Garapati S, Das M, Mujeeb A, Dey S, Kiswe SP. Cuspal movement and microleakage in premolar teeth restored with posterior restorative materials. J Int Oral Health 2014;6(5):47-50.
  • [19] Hodobet C, Pangica AM, Florescu A, Hancu V, Biclesanu CF. In vitro Comparative study on the marginal adaptation of direct, semi-direct and indirect composite resins restorations to dentine and dental cementum. Revista de Chimie 2018;69:3138-3145.
  • [20] Kalra S, Singh A, Gupta M, Chadha V. Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent. Contemp Clin Dent 2012;3(1):48-53.
  • [21] Fleming GJ, Hall DP, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with posterior filling materials of varying reported volumetric shrinkage values. J Dent 2005;33(2):139-146.
  • [22] Politi I, McHugh LEJ, Al-Fodeh RS, Fleming GJP. Modification of the restoration protocol for resin-based composite (RBC) restoratives (conventional and bulk fill) on cuspal movement and microleakage score in molar teeth. Dent Mater 2018;34(9):1271-1277.
  • [23] Yazici AR, Celik C, Ozgünaltay G. Microleakage of different resin composite types. Quintessence Int 2004;35(10):790-794.
  • [24] Habib SR, Alotaibi A, Al Hazza N, Allam Y, AlGhazi M. Two-body wear behavior of human enamel versus monolithic zirconia, lithium disilicate, ceramometal and composite resin. J Adv Prosthodont 2019;11(1):23-31.
  • [25] Takahashi R, Nikaido T, Tagami J, Hickel R, Kunzelmann KH. Contemporary adhesives: Marginal adaptation and microtensile bond strength of class II composite restorations. Am J Dent 2012;25(3):181-188.
  • [26] Gamarra VSS, Borges GA, Júnior LHB, Spohr AM. Marginal adaptation and microleakage of a bulk-fill composite resin photopolymerized with different techniques. Odontology 2018;106(1):56-63.
  • [27] Nakabayashi N, Ashizawa M, Nakamura M. Identification of a resin-dentin hybrid layer in vital human dentin created in vivo: durable bonding to vital dentin. Quintessence Int 1992;23(2):135-141.
  • [28] Pongprueksa P, Senawongse P, Vongphan N. Effect of dentinal tubule orientation on the modulus of elasticity of resin-infiltrated demineralized dentin. Dent Mater J 2014;33(1):54-58.
  • [29] Nie J, Yap AU, Wang XY. Influence of shrinkage and viscosity of flowable composite liners on cervical microleakage of class II restorations: a micro-ct analysis. Oper Dent 2018;43(6):656-664.
  • [30] Kitayama S, Nasser NA, Pilecki P, Wilson RF, Nikaido T, Tagami J, Watson TF, Foxton RM. Effect of resin coating and occlusal loading on microleakage of class II computer-aided design/computer-aided manufacturing fabricated ceramic restorations: a confocal microscopic study. Acta Odontol Scand 2011;69(3):182-192.
  • [31] Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent Mater 2016;32(8):998-1006.
  • [32] Boaro LC, Gonçalves F, Guimarães TC, Ferracane JL, Versluis A, Braga RR. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater 2010;26(12):1144-1150.
  • [33] Van Ende A, De Munck J, Mine A, Lambrechts P, Van Meerbeek B. Does a low-shrinking composite induce less stress at the adhesive interface? Dent Mater 2010;26(3):215-222.
  • [34] Han SH, Sadr A, Tagami J, Park SH. Internal adaptation of resin composites at two configurations: Influence of polymerization shrinkage and stress. Dent Mater 2016;32(9):1085-1094.
  • [35] Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LE, Martin AA, Ambrosano G, Giannini M. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent Mater 2015;31(12):1542-1551.
  • [36] Soares GP, Ambrosano GM, Lima DA, Marchi GM, Correr-Sobrinho L, Lovadino JR, Aguiar FH. Effect of light polymerization time, mode, and thermal and mechanical load cycling on microleakage in resin composite restorations. Lasers Med Sci 2014;29(2):545-550.
  • [37] Agarwal RS, Hiremath H, Agarwal J, Garg A. Evaluation of cervical marginal and internal adaptation using newer bulk fill composites: An in vitro study. J Conserv Dent 2015;18(1):56-61.
  • [38] Kirsch C, Ender A, Attin T, Mehl A. Trueness of four different milling procedures used in dental CAD/CAM systems. Clin Oral Investig 2017;21(2):551-558.
  • [39] Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res 2016;60(2):72-84.
  • [40] Sandoval MJ, Rocca GT, Krejci I, Mandikos M, Dietschi D. In vitro evaluation of marginal and internal adaptation of class II CAD/CAM ceramic restorations with different resinous bases and interface treatments. Clin Oral Investig 2015;19(9):2167-2177.
  • [41] Shim JS, Lee JS, Lee JY, Choi YJ, Shin SW, Ryu JJ. Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system. J Appl Oral Sci 2015;23(5):515-522.
  • [42] Qian K, Yang X, Feng H, Liu Y. Marginal adaptation of different hybrid ceramic inlays after thermal cycling. Adv Appl Ceram 2020;119(5-6):284-290.
  • [43] Bortolotto T, Onisor I, Krejci I. Proximal direct composite restorations and chairside CAD/CAM inlays: Marginal adaptation of a two-step self-etch adhesive with and without selective enamel conditioning. Clin Oral Investig 2007;11(1):35-43.
There are 43 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Ayşe Aslı Şenol 0000-0003-3542-4877

Pınar Yılmaz Atalı 0000-0003-3121-360X

Erkut Kahramanoğlu 0000-0002-2583-6627

Publication Date September 27, 2021
Submission Date February 17, 2021
Published in Issue Year 2021 Volume: 11 Issue: 3

Cite

APA Şenol, A. A., Yılmaz Atalı, P., & Kahramanoğlu, E. (2021). Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading. Clinical and Experimental Health Sciences, 11(3), 564-574. https://doi.org/10.33808/clinexphealthsci.880368
AMA Şenol AA, Yılmaz Atalı P, Kahramanoğlu E. Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading. Clinical and Experimental Health Sciences. September 2021;11(3):564-574. doi:10.33808/clinexphealthsci.880368
Chicago Şenol, Ayşe Aslı, Pınar Yılmaz Atalı, and Erkut Kahramanoğlu. “Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading”. Clinical and Experimental Health Sciences 11, no. 3 (September 2021): 564-74. https://doi.org/10.33808/clinexphealthsci.880368.
EndNote Şenol AA, Yılmaz Atalı P, Kahramanoğlu E (September 1, 2021) Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading. Clinical and Experimental Health Sciences 11 3 564–574.
IEEE A. A. Şenol, P. Yılmaz Atalı, and E. Kahramanoğlu, “Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading”, Clinical and Experimental Health Sciences, vol. 11, no. 3, pp. 564–574, 2021, doi: 10.33808/clinexphealthsci.880368.
ISNAD Şenol, Ayşe Aslı et al. “Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading”. Clinical and Experimental Health Sciences 11/3 (September 2021), 564-574. https://doi.org/10.33808/clinexphealthsci.880368.
JAMA Şenol AA, Yılmaz Atalı P, Kahramanoğlu E. Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading. Clinical and Experimental Health Sciences. 2021;11:564–574.
MLA Şenol, Ayşe Aslı et al. “Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading”. Clinical and Experimental Health Sciences, vol. 11, no. 3, 2021, pp. 564-7, doi:10.33808/clinexphealthsci.880368.
Vancouver Şenol AA, Yılmaz Atalı P, Kahramanoğlu E. Microleakage and Marginal Integrity of Direct and Indirect Composite Resin Restorations in MOD Cavities After Thermo-Mechanical Loading. Clinical and Experimental Health Sciences. 2021;11(3):564-7.

14639   14640