Review
BibTex RIS Cite

Nanoparticles and Their Application in Prosthetic Dentistry

Year 2023, Volume: 13 Issue: 3, 685 - 695, 11.09.2023
https://doi.org/10.33808/clinexphealthsci.1144865

Abstract

In recent years, nanoparticles produced with nanotechnology have been widely used in many fields of medicine and dentistry such as prosthetic dental treatment. The advanced properties of nanoparticles such as biocompatibility, durability, solubility, large surface area, high stability, and thermal conductivity facilitate the development of dental materials. Compared to the traditional materials used, they can offer useful features, such as better diagnosis, treatment plans, improvement, and protection of oral health. Therefore, a better understanding of nanotechnology and nanoparticles is essential to appreciate how these materials can be utilised in our daily practice. This review provides an overview of nanoparticles and their applications in dentistry.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Abiodun-Solanke I, Ajayi D, Arigbede A. Nanotechnology and its application in dentistry. Ann Med Health Sci Res. 2014;4(Suppl 3):S171-S177. DOI:10.4103/2141-9248.141951
  • Ogle OE, Byles N. Nanotechnology in dentistry today. West Indian Med J. 2014;63(4):344-348. DOI:10.7727/wimj.2013.178
  • Commission Recommendation of 18 October 2011 on the definition of nanomaterial Text with EEA relevance’ (2011) Official Journal L 275, 38-40. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011H0696
  • Moraes G, Zambom C, Siqueira WL. Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel). 2021;14(8):752. Published 2021 Jul 30. DOI:10.3390/ph14080752
  • Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: A review. J Oral Biol Craniofac Res. 2018;8(1):58-67. DOI:10.1016/j.jobcr.2017.12.004
  • Wang Z, Lu Y, Yuan S, et al. Hydrothermal synthesis and humidity sensing properties of size-controlled Zirconium Oxide (ZrO2) nanorods. J Colloid Interface Sci. 2013;396:9-15. DOI:10.1016/j.jcis.2012.12.068
  • Hu C, Sun J, Long, C, Wu L., Zhou C, Zhang, X. Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol. Rev., Vol. 8 (Issue 1), pp. 396-404. 2019 DOI: 10.1515/ntrev-2019-0035
  • Qin W, Zhu L. Anisotropic morphology, formation mechanisms, and fluorescence properties of zirconia nanocrystals. Sci Rep. 2020;10(1):13904. Published 2020 Aug 17.DOI:10.1038/s41598-020-70570-5
  • Ateş H, Bahçeci E. Nano Malzemeler İçin Üretim Yöntemleri. Gazi Univ. J. Sci. Part C: Design and Technology, 2015;3(2),483-499. (Turkish)
  • Nizami MZI, Xu VW, Yin IX, Yu OY, Chu CH. Metal and Metal Oxide Nanoparticles in Caries Prevention: A Review. Nanomaterials (Basel). 2021;11(12):3446. Published 2021 Dec 20. DOI:10.3390/nano11123446
  • Aguiar, AE, da Silva LG, de Paula Barbosa HF, Gloria RF, Espanhol-Soares M, Gimenes R. Synthesis of Al2O3-0.5 B2O3-SiO2 fillers by sol-gel method for dental resin composites. J Non Cryst Solids, 2017;458, 86-96. DOI: 10.1016/j.jnoncrysol.2016.12.007
  • Shukla S, Seal S. Thermodynamic Tetragonal Phase Stability in Sol−Gel Derived Nanodomains of Pure Zirconia. J. Phys. Chem. B 2004, 108, 11, 3395–3399 DOI: 10.1021/jp037532x
  • Taguchi M, Takami S, Adschiri T, Nakane T, Sato K, Naka T. Simple and rapid synthesis of ZrO2 nanoparticles from Zr(OEt)4 and Zr(OH)4 using a hydrothermal method. CrystEngComm. 2012 Dec 14. 2117-2123. DOI: 10.1039/c2ce06408a
  • Arantes TM, Mambrini GP, Stroppa DG, Leite ER, Longo E, Ramirez AJ, Camargo ER. Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process. J Nanopart Res 12, 3105–3110 (2010). DOI: 10.1007/s11051-010-9906-5
  • Awan KH, Khan S. Nanotechnology and its role in dentistry: A review. Hard Tissue 2014 Jun 14;3(1):10.ğ09
  • Mendonça G, Mendonça DB, Aragão FJ, Cooper LF. Advancing dental implant surface technology--from micron- to nanotopography. Biomaterials. 2008;29(28):3822-3835. DOI:10.1016/j.biomaterials.2008.05.012
  • Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment [published online ahead of print, 2020 Oct 8]. WIREs Nanomed. Nanobiotechnol. 2020;e1669. DOI:10.1002/wnan.1669
  • Hu Z, Wang X, Xia W, Wang Z, Zhang P, Xia L, Lin K, Zhu M. Nano-Structure Designing Promotion Osseointegration of Hydroxyapatite Coated Ti-6Al-4V Alloy Implants in Diabetic Model. J Biomed Nanotechnol. 2019;15(8):1701-1713. DOI:10.1166/jbn.2019.2812
  • Yang GL, He FM, Hu JA, Wang XX, Zhao SF. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):782-789. DOI:10.1016/j.tripleo.2008.12.023
  • Kasimoglu Y, Tabakcilar D, Guclu ZA, Yamamoto-Nemoto S, Tuna EB, Ozen B, Tuzuner T, Ince G. Nanomaterials and Nanorobotics in Dentistry: A Review. J Dent Indones. 2020;27(2): 77-84 DOI: 10.14693/jdi.v27i2.1154
  • Verma H, Tandon P. Application of Nanotechnology in Oral and Maxillofacial Surgery. IOSR J. Dent. Med. Sci. 2020;19(6):56–61. DOI:10.9790/0853-1906025661
  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Mater. Chem. B, 2020;8, 354-367 DOI: 10.1039/C9TB01955C
  • Raura N, Garg A, Arora A, Roma M. Nanoparticle technology and its implications in endodontics: a review. Biomater Res 24, 21 (2020). DOI: 10.1186/s40824-020-00198-z
  • Shrestha A, Kishen A. Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm. J Endod. 2014;40(10):1604-1610. DOI:10.1016/j.joen.2014.03.009
  • Afkhami F, Akbari S, Chiniforush N. Entrococcus faecalis Elimination in Root Canals Using Silver Nanoparticles, Photodynamic Therapy, Diode Laser, or Laser-activated Nanoparticles: An In Vitro Study. J Endod. 2017;43(2):279-282. DOI:10.1016/j.joen.2016.08.029
  • Wu C, Chang J, Fan W. Bioactive mesoporous calcium-silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth. J. Mater. Chem., 2012,22, 16801-16809 DOI:10.1039/C2JM33387B
  • Nair N, James B, Devadathan A, Johny MK, Mathew J, Jacob J. Comparative evaluation of antibiofilm efficacy of chitosan nanoparticle- and zinc oxide nanoparticle-incorporated calcium hydroxide-based sealer: An in vitro study. Contemp Clin Dent. 2018;9(3):434-439. DOI:10.4103/ccd.ccd_225_18
  • Ghafar H, Khan MI, Sarwar HS, Yaqoob S, Hussain SZ, Tariq I, et al. Development and Characterization of Bioadhesive Film Embedded with Lignocaine and Calcium Fluoride Nanoparticles. AAPS PharmSciTech 21, 60 (2020). DOI:10.1208/s12249-019-1615-5
  • Khurshid Z, Zafar M, Qasim S, Shahab S, Naseem M, Abureqaiba A. Advances in Nanotechnology for Restorative Dentistry. Materials (Basel). 2015;8(2):717-731. Published 2015 Feb 16. DOI:10.3390/ma8020717
  • BASSO M. Teeth restoration using a high-viscosity glass ionomer cement: The Equia® system. J Minim Interv Dent, 2011, 4.3: 74-76. DOI: 10.10520/EJC75756
  • Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4(2):432-440. DOI:10.1016/j.actbio.2007.07.011
  • Ibrahim MA, Neo J, Esguerra RJ, Fawzy AS. Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cement. J Biomater Appl. 2015;30(4):409-419. DOI:10.1177/0885328215589672
  • Senthil Kumar R, Ravikumar N, Kavitha S, Mahalaxmi S, Jayasree R, Sampath Kumar TS, et al. Nanochitosan modified glass ionomer cement with enhanced mechanical properties and fluoride release. Int J Biol Macromol. 2017;104(Pt B):1860-1865. DOI:10.1016/j.ijbiomac.2017.05.120
  • Jandt KD, Sigusch BW. Future perspectives of resin-based dental materials. Dent Mater. 2009;25(8):1001-1006 DOI:10.1016/j.dental.2009.02.009
  • Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42:3862–3875. DOI: 10.1039/C3CS35405A
  • Redlich M, Katz A, Rapoport L, Wagner HD, Feldman Y, Tenne R. Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS2 impregnated in electroless nickel–phosphorous film. Dent Mater. 2008;24(12):1640-1646. DOI:10.1016/j.dental.2008.03.030
  • Cao B, Wang Y, Li N, Liu B, Zhang Y. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2-xNy thin film and examination of its antimicrobial performance. Dent Mater J. 2013;32(2):311-316. DOI:10.4012/dmj.2012-155
  • Rahoma A, Abualsaud R, Al-Thobity AM, Akhtar S, Helal MA, Al-Harbi FA, et al. Impact of different surface treatments and repair material reinforcement on the flexural strength of repaired PMMA denture base material. Dent Mater J. 2020;39(3):471-482. DOI:10.4012/dmj.2018-436
  • Gad MM, Rahoma A, Al-Thobity AM, ArRejaie AS. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomedicine. 2016;11:5633-5643. Published 2016 Oct 27. DOI:10.2147/IJN.S120054
  • Gad MM, Rahoma A, Abualsaud R, Al-Thobity AM, Akhtar S, Siddiqui IA, Al-Harbi FAInfluence of artificial aging and ZrO2 nanoparticle-reinforced repair resin on the denture repair strength. J Clin Exp Dent. 2020;12(4):e354-e362. Published 2020 Apr 1. DOI:10.4317/jced.56610
  • Ashour M, Ebrahim M. Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. World j. nano sci. eng. 2014;4(2): 50-57. DOI: 10.4236/wjnse.2014.42008.
  • Chladek G, Kasperski J, Barszczewska-Rybarek I, Zmudzki J. Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles. Int J Mol Sci. 2012;14(1):563-574. Published 2012 Dec 27. DOI:10.3390/ijms14010563
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles [published correction appears in Nanomedicine. 2014 Jul;10(5):e1119]. Nanomedicine. 2007;3(1):95-101. DOI:10.1016/j.nano.2006.12.001
  • Hamouda IM. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res. 2012;26(3):143-151. DOI:10.7555/JBR.26.20120027
  • Karci M, Demir N, Yazman S. Evaluation of Flexural Strength of Different Denture Base Materials Reinforced with Different Nanoparticles. J Prosthodont. 2019;28(5):572-579. DOI:10.1111/jopr.12974
  • Patel RM, Dahane TM, Godbole S, Kambala SS, Mangal K. Applications of Nanotechnology in Prosthodontics. J Evolution Med Dent Sci, 2020;9(47), 3566-3572. DOI: 10.14260/jemds/2020/782
  • Coutinho IF, Aras MA, D’souza KM. Nanomaterials and their application in prosthodontics: a review. J. Dent. Res.2018, 6(6):124-131 DOI:10.19177/jrd.v6e62018124-131
  • Singh Pal K, Gaikwad A v, Sarapur S, Kumar Jain S. Nanopartıcles In Prosthodontıcs – Boon Or Bane. IJOCR Apr - Jun 2015; Volume 3 Issue 2 Page 32-39.
  • Soumya Sree K, Abhishek V, S S, Srikanth L, Ramakrishna M, Lakshmi K. Nanotechnology in prosthodontics. IP Ann Prosthodont Restor Dent 2021;7(1):22-28 DOI: 10.18231/j.aprd.2021.005
  • Silikas N, Masouras K, Satterthwaite J, Watts DC. Effect of nanofillers in adhesive and aesthetic properties of dental resin-composites. Int. J. Nano and Biomaterials.2007;1(2):116-27. DOI: 10.1504/IJNBM.2007.016556
  • Chandki R, Kala M, Kiran Kumar N, Brigit B, Banthia P, Banthia R. “NANODENTISTRY”: Exploring the beauty of miniature. J Clin Exp Dent. 2012;4(2):e119-e124. Published 2012 Apr 1. DOI:10.4317/jced.50720
  • Abbas M, Sakr H. Wear performance of nano-composite artificial denture. Teeth Egypt. Dent. J. 2017;63(3):2535-2544. DOI:10.21608/edj.2017.76074.
  • Nam KY. In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J Adv Prosthodont. 2011;3(1):20-24. DOI:10.4047/jap.2011.3.1.20
  • Parameswari BD, Dhevishri S, Ranjith R, Annapoorni H. Nanoparticles in Prosthetic Materials: A Literature Review. J Pharm Bioallied Sci. 2021;13(Suppl 2):S917-S920. DOI:10.4103/jpbs.jpbs_280_21
  • Garner SJ, Nobbs AH, McNally LM, Barbour ME. An antifungal coating for dental silicones composed of chlorhexidine nanoparticles. J Dent. 2015;43(3):362-372. DOI:10.1016/j.jdent.2014.12.005
  • Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dent Mater. 2010;26(5):471-482. DOI:10.1016/j.dental.2010.01.005
  • Karimi MA, Hatefi A, Mashhadizadeh MH, Behjatmanesh-Ardakani R. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation. Int. Nano Lett.2011; 1, 43-51.
  • Moshaverinia A, Ansari S, Movasaghi Z, Billington RW, Darr JA, Rehman IU. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent Mater. 2008;24(10):1381-1390. DOI:10.1016/j.dental.2008.03.008
  • Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. J Dent. 2011;39(9):589-598. DOI:10.1016/j.jdent.2011.05.006
  • Jhaveri H M, Balaji P R. Nanotechnology: The future of dentistry. J Indian Prosthodont Soc 2005;5:15-7 DOI: 10.4103/0972-4052.16335
  • Omidkhoda M, Hasanzadeh N, Soleimani F, Shafaee H. Antimicrobial and physical properties of alginate impression material incorporated with silver nanoparticles. Dent Res J (Isfahan). 2019;16(6):372-376. Published 2019 Nov 12. DOI: 10.4103/1735-3327.270782
  • Meran Z, Besinis A, De Peralta T, Handy RD. Antifungal properties and biocompatibility of silver nanoparticle coatings on silicone maxillofacial prostheses in vitro. J Biomed Mater Res B Appl Biomater. 2018;106(3):1038-1051. DOI:10.1002/jbm.b.33917
  • Sonnahalli NK, Chowdhary R. Effect of nanoparticles on color stability and mechanical and biological properties of maxillofacial silicone elastomer: A systematic review. J Indian Prosthodont Soc. 2020;20(3):244-254. DOI:10.4103/jips.jips_429_19
  • Han Y, Kiat-amnuay S, Powers JM, Zhao Y. Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J Prosthet Dent. 2008;100(6):465-473. DOI:10.1016/S0022-3913(08)60266-8
  • Karakoca Nemli S, Bankoğlu Güngör M, Bağkur M, Turhan Bal B, Kasko Arıcı Y. In vitro evaluation of color and translucency reproduction of maxillofacial prostheses using a computerized system. J Adv Prosthodont. 2018;10(6):422-429. DOI:10.4047/jap.2018.10.6.422
  • Han Y, Zhao Y, Xie C, Powers JM, Kiat-amnuay S. Color stability of pigmented maxillofacial silicone elastomer: effects of nano-oxides as opacifiers. J Dent. 2010;38 Suppl 2:e100-e105. DOI:10.1016/j.jdent.2010.05.009
  • Zhang Y, Kelly JR. Dental Ceramics for Restoration and Metal Veneering. Dent Clin North Am. 2017;61(4):797-819. DOI:10.1016/j.cden.2017.06.005
  • Chaar MS, Witkowski S, Strub JR, Att W. Effect of veneering technique on the fracture resistance of zirconia fixed dental prostheses. J Oral Rehabil. 2013;40(1):51-59. DOI:10.1111/j.1365-2842.2012.02323.x
  • Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Kapusevska B, Gigovski N, Bajraktarova-Misevska C, Grozdanov A. Contemporary Dental Ceramic Materials, A Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use. Open Access Maced J Med Sci. 2018;6(9):1742-1755. Published 2018 Sep 24. DOI:10.3889/oamjms.2018.378
  • Yavuzyılmaz H, Turhan B, Bavbek B, Kurt E. Tam Porselen Sistemleri I. Gazi Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2005; 22(1): 41 - 48. (turkish)
  • Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-235. DOI:10.11607/ijp.4244
  • Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater. 2014;30(5):564-569. DOI:10.1016/j.dental.2014.02.019
  • Suzuki S. In vitro wear of nano-composite denture teeth. J Prosthodont. 2004;13(4):238-243. DOI:10.1111/j.1532-849X.2004.04043.x
  • Loyaga-Rendon PG, Takahashi H, Hayakawa I, Iwasaki N. Compositional characteristics and hardness of acrylic and composite resin artificial teeth. J Prosthet Dent. 2007;98(2):141-149. DOI:10.1016/S0022-3913(07)60047-X
  • GC America. Cerasmart Force Absorbing flexible nanoceramic CAD/CAM blok. Published [10 May 2022]. Accessed [17 July 2022]. https://www.gcamerica.com/products/digital/CERASMART/
  • Zahnfabrik V. ENAMIC. VITA Zahnfabrik. Published [2022].Accessed [17 July 2022]. https://www.vita-zahnfabrik.com/en/VITA-ENAMIC-24970.html
  • Shetty R, Shenoy K, Dandekeri S, Syedsuhaim K, Ragher M, Francis J, et al. Resin-Matrix Ceramics – An Overview. Int. J. Recent Sci. Res.2015 november;6,11,7414-7417, DOI: 10.24327/IJRSR
  • Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-147. DOI:10.1177/0022034517737483
  • Uno S, Okada M, Taketa H, Torii Y, Matsumoto T. Toughening of highly translucent zirconia by monoclinic ZrO2 and SiO2 particle coating. Dent Mater J. 2020;39(2):295-301. DOI:10.4012/dmj.2018-415
  • Zucuni CP, Ilha BD, May MM, May LG, Valandro LF. Grinding the intaglio surface of yttria partially- and fully-stabilized zirconia polycrystals restorations: Effect on their fatigue behavior. J Mech Behav Biomed Mater. 2020;109:103800. DOI:10.1016/j.jmbbm.2020.103800
  • Pereira GK, Silvestri T, Camargo R, et al. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging. Mater Sci Eng C Mater Biol Appl. 2016;63:70-77. DOI:10.1016/j.msec.2016.02.049
  • Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120(1):132-137. DOI:10.1016/j.prosdent.2017.08.004
  • Zhang F, Inokoshi M, Batuk M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):e327-e337. DOI:10.1016/j.dental.2016.09.025
  • Dapieve KS, Guilardi LSF, Silvestri T, Rippe MP, Pereira GKR, Valandro LF. Mechanical performance of Y-TZP monolithic ceramic after grinding and aging: Survival estimates and fatigue strength. J Mech Behav Biomed Mater. 2018;87:288-295. DOI:10.1016/j.jmbbm.2018.07.041
  • Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part II. Quintessence Int. 2017;48(6):441-450. DOI:10.3290/j.qi.a38157
  • Inokoshi M, Shimizu H, Nozaki K, et al. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater. 2018;34(3):508-518. DOI:10.1016/j.dental.2017.12.008
  • Mao L, Kaizer MR, Zhao M, Guo B, Song YF, Zhang Y. Graded Ultra-Translucent Zirconia (5Y-PSZ) for Strength and Functionalities. J Dent Res. 2018;97(11):1222-1228. DOI:10.1177/0022034518771287
  • Zucuni CP, Guilardi LF, Rippe MP, Pereira GKR, Valandro LF. Fatigue strength of yttria-stabilized zirconia polycrystals: Effects of grinding, polishing, glazing, and heat treatment. J Mech Behav Biomed Mater. 2017;75:512-520. DOI:10.1016/j.jmbbm.2017.06.016
  • Preis V, Schmalzbauer M, Bougeard D, Schneider-Feyrer S, Rosentritt M. Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation. J Dent. 2015;43(1):133-139. DOI:10.1016/j.jdent.2014.08.011
  • al-Wahadni A, Martin DM. Glazing and finishing dental porcelain: a literature review. J Can Dent Assoc. 1998;64(8):580-583.
  • Venkatesh G, Thenmuhil D, Manisha Vidyavathy S, Vinothan R. Effect of addition of nano zirconia in ceramic glazes. Adv Mat Res.984, 488 - 494, 2014. DOI:10.4028/www.scientific.net/AMR.984-985.488
  • Moosa JM, Abdulzahraa HG, Zaidan SA, Abed HY. Reinforcing glaze layer of restorative dental zirconia by adding nano alumina ceramics. NeuroQuantology 2021;19(6):73-78 DOI: 10.14704/nq.2021.19.6.NQ21071
  • Okada M, Taketa H, Hara ES, Torii Y, Irie M, Matsumoto T. Improvement of mechanical properties of Y-TZP by thermal annealing with monoclinic zirconia nanoparticle coating. Dent Mater. 2019;35(7):970-978. DOI:10.1016/j.dental.2019.04.002
  • Fujii Y, Okada M, Taketa H, Matsumoto T. Coating method for smooth and reinforced surface layer of highly translucent zirconia. Dent Mater J. 2021;40(2):532-537. DOI:10.4012/dmj.2020-108
Year 2023, Volume: 13 Issue: 3, 685 - 695, 11.09.2023
https://doi.org/10.33808/clinexphealthsci.1144865

Abstract

Project Number

-

References

  • Abiodun-Solanke I, Ajayi D, Arigbede A. Nanotechnology and its application in dentistry. Ann Med Health Sci Res. 2014;4(Suppl 3):S171-S177. DOI:10.4103/2141-9248.141951
  • Ogle OE, Byles N. Nanotechnology in dentistry today. West Indian Med J. 2014;63(4):344-348. DOI:10.7727/wimj.2013.178
  • Commission Recommendation of 18 October 2011 on the definition of nanomaterial Text with EEA relevance’ (2011) Official Journal L 275, 38-40. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011H0696
  • Moraes G, Zambom C, Siqueira WL. Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel). 2021;14(8):752. Published 2021 Jul 30. DOI:10.3390/ph14080752
  • Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: A review. J Oral Biol Craniofac Res. 2018;8(1):58-67. DOI:10.1016/j.jobcr.2017.12.004
  • Wang Z, Lu Y, Yuan S, et al. Hydrothermal synthesis and humidity sensing properties of size-controlled Zirconium Oxide (ZrO2) nanorods. J Colloid Interface Sci. 2013;396:9-15. DOI:10.1016/j.jcis.2012.12.068
  • Hu C, Sun J, Long, C, Wu L., Zhou C, Zhang, X. Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol. Rev., Vol. 8 (Issue 1), pp. 396-404. 2019 DOI: 10.1515/ntrev-2019-0035
  • Qin W, Zhu L. Anisotropic morphology, formation mechanisms, and fluorescence properties of zirconia nanocrystals. Sci Rep. 2020;10(1):13904. Published 2020 Aug 17.DOI:10.1038/s41598-020-70570-5
  • Ateş H, Bahçeci E. Nano Malzemeler İçin Üretim Yöntemleri. Gazi Univ. J. Sci. Part C: Design and Technology, 2015;3(2),483-499. (Turkish)
  • Nizami MZI, Xu VW, Yin IX, Yu OY, Chu CH. Metal and Metal Oxide Nanoparticles in Caries Prevention: A Review. Nanomaterials (Basel). 2021;11(12):3446. Published 2021 Dec 20. DOI:10.3390/nano11123446
  • Aguiar, AE, da Silva LG, de Paula Barbosa HF, Gloria RF, Espanhol-Soares M, Gimenes R. Synthesis of Al2O3-0.5 B2O3-SiO2 fillers by sol-gel method for dental resin composites. J Non Cryst Solids, 2017;458, 86-96. DOI: 10.1016/j.jnoncrysol.2016.12.007
  • Shukla S, Seal S. Thermodynamic Tetragonal Phase Stability in Sol−Gel Derived Nanodomains of Pure Zirconia. J. Phys. Chem. B 2004, 108, 11, 3395–3399 DOI: 10.1021/jp037532x
  • Taguchi M, Takami S, Adschiri T, Nakane T, Sato K, Naka T. Simple and rapid synthesis of ZrO2 nanoparticles from Zr(OEt)4 and Zr(OH)4 using a hydrothermal method. CrystEngComm. 2012 Dec 14. 2117-2123. DOI: 10.1039/c2ce06408a
  • Arantes TM, Mambrini GP, Stroppa DG, Leite ER, Longo E, Ramirez AJ, Camargo ER. Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process. J Nanopart Res 12, 3105–3110 (2010). DOI: 10.1007/s11051-010-9906-5
  • Awan KH, Khan S. Nanotechnology and its role in dentistry: A review. Hard Tissue 2014 Jun 14;3(1):10.ğ09
  • Mendonça G, Mendonça DB, Aragão FJ, Cooper LF. Advancing dental implant surface technology--from micron- to nanotopography. Biomaterials. 2008;29(28):3822-3835. DOI:10.1016/j.biomaterials.2008.05.012
  • Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment [published online ahead of print, 2020 Oct 8]. WIREs Nanomed. Nanobiotechnol. 2020;e1669. DOI:10.1002/wnan.1669
  • Hu Z, Wang X, Xia W, Wang Z, Zhang P, Xia L, Lin K, Zhu M. Nano-Structure Designing Promotion Osseointegration of Hydroxyapatite Coated Ti-6Al-4V Alloy Implants in Diabetic Model. J Biomed Nanotechnol. 2019;15(8):1701-1713. DOI:10.1166/jbn.2019.2812
  • Yang GL, He FM, Hu JA, Wang XX, Zhao SF. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):782-789. DOI:10.1016/j.tripleo.2008.12.023
  • Kasimoglu Y, Tabakcilar D, Guclu ZA, Yamamoto-Nemoto S, Tuna EB, Ozen B, Tuzuner T, Ince G. Nanomaterials and Nanorobotics in Dentistry: A Review. J Dent Indones. 2020;27(2): 77-84 DOI: 10.14693/jdi.v27i2.1154
  • Verma H, Tandon P. Application of Nanotechnology in Oral and Maxillofacial Surgery. IOSR J. Dent. Med. Sci. 2020;19(6):56–61. DOI:10.9790/0853-1906025661
  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Mater. Chem. B, 2020;8, 354-367 DOI: 10.1039/C9TB01955C
  • Raura N, Garg A, Arora A, Roma M. Nanoparticle technology and its implications in endodontics: a review. Biomater Res 24, 21 (2020). DOI: 10.1186/s40824-020-00198-z
  • Shrestha A, Kishen A. Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm. J Endod. 2014;40(10):1604-1610. DOI:10.1016/j.joen.2014.03.009
  • Afkhami F, Akbari S, Chiniforush N. Entrococcus faecalis Elimination in Root Canals Using Silver Nanoparticles, Photodynamic Therapy, Diode Laser, or Laser-activated Nanoparticles: An In Vitro Study. J Endod. 2017;43(2):279-282. DOI:10.1016/j.joen.2016.08.029
  • Wu C, Chang J, Fan W. Bioactive mesoporous calcium-silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth. J. Mater. Chem., 2012,22, 16801-16809 DOI:10.1039/C2JM33387B
  • Nair N, James B, Devadathan A, Johny MK, Mathew J, Jacob J. Comparative evaluation of antibiofilm efficacy of chitosan nanoparticle- and zinc oxide nanoparticle-incorporated calcium hydroxide-based sealer: An in vitro study. Contemp Clin Dent. 2018;9(3):434-439. DOI:10.4103/ccd.ccd_225_18
  • Ghafar H, Khan MI, Sarwar HS, Yaqoob S, Hussain SZ, Tariq I, et al. Development and Characterization of Bioadhesive Film Embedded with Lignocaine and Calcium Fluoride Nanoparticles. AAPS PharmSciTech 21, 60 (2020). DOI:10.1208/s12249-019-1615-5
  • Khurshid Z, Zafar M, Qasim S, Shahab S, Naseem M, Abureqaiba A. Advances in Nanotechnology for Restorative Dentistry. Materials (Basel). 2015;8(2):717-731. Published 2015 Feb 16. DOI:10.3390/ma8020717
  • BASSO M. Teeth restoration using a high-viscosity glass ionomer cement: The Equia® system. J Minim Interv Dent, 2011, 4.3: 74-76. DOI: 10.10520/EJC75756
  • Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4(2):432-440. DOI:10.1016/j.actbio.2007.07.011
  • Ibrahim MA, Neo J, Esguerra RJ, Fawzy AS. Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cement. J Biomater Appl. 2015;30(4):409-419. DOI:10.1177/0885328215589672
  • Senthil Kumar R, Ravikumar N, Kavitha S, Mahalaxmi S, Jayasree R, Sampath Kumar TS, et al. Nanochitosan modified glass ionomer cement with enhanced mechanical properties and fluoride release. Int J Biol Macromol. 2017;104(Pt B):1860-1865. DOI:10.1016/j.ijbiomac.2017.05.120
  • Jandt KD, Sigusch BW. Future perspectives of resin-based dental materials. Dent Mater. 2009;25(8):1001-1006 DOI:10.1016/j.dental.2009.02.009
  • Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42:3862–3875. DOI: 10.1039/C3CS35405A
  • Redlich M, Katz A, Rapoport L, Wagner HD, Feldman Y, Tenne R. Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS2 impregnated in electroless nickel–phosphorous film. Dent Mater. 2008;24(12):1640-1646. DOI:10.1016/j.dental.2008.03.030
  • Cao B, Wang Y, Li N, Liu B, Zhang Y. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2-xNy thin film and examination of its antimicrobial performance. Dent Mater J. 2013;32(2):311-316. DOI:10.4012/dmj.2012-155
  • Rahoma A, Abualsaud R, Al-Thobity AM, Akhtar S, Helal MA, Al-Harbi FA, et al. Impact of different surface treatments and repair material reinforcement on the flexural strength of repaired PMMA denture base material. Dent Mater J. 2020;39(3):471-482. DOI:10.4012/dmj.2018-436
  • Gad MM, Rahoma A, Al-Thobity AM, ArRejaie AS. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomedicine. 2016;11:5633-5643. Published 2016 Oct 27. DOI:10.2147/IJN.S120054
  • Gad MM, Rahoma A, Abualsaud R, Al-Thobity AM, Akhtar S, Siddiqui IA, Al-Harbi FAInfluence of artificial aging and ZrO2 nanoparticle-reinforced repair resin on the denture repair strength. J Clin Exp Dent. 2020;12(4):e354-e362. Published 2020 Apr 1. DOI:10.4317/jced.56610
  • Ashour M, Ebrahim M. Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. World j. nano sci. eng. 2014;4(2): 50-57. DOI: 10.4236/wjnse.2014.42008.
  • Chladek G, Kasperski J, Barszczewska-Rybarek I, Zmudzki J. Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles. Int J Mol Sci. 2012;14(1):563-574. Published 2012 Dec 27. DOI:10.3390/ijms14010563
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles [published correction appears in Nanomedicine. 2014 Jul;10(5):e1119]. Nanomedicine. 2007;3(1):95-101. DOI:10.1016/j.nano.2006.12.001
  • Hamouda IM. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res. 2012;26(3):143-151. DOI:10.7555/JBR.26.20120027
  • Karci M, Demir N, Yazman S. Evaluation of Flexural Strength of Different Denture Base Materials Reinforced with Different Nanoparticles. J Prosthodont. 2019;28(5):572-579. DOI:10.1111/jopr.12974
  • Patel RM, Dahane TM, Godbole S, Kambala SS, Mangal K. Applications of Nanotechnology in Prosthodontics. J Evolution Med Dent Sci, 2020;9(47), 3566-3572. DOI: 10.14260/jemds/2020/782
  • Coutinho IF, Aras MA, D’souza KM. Nanomaterials and their application in prosthodontics: a review. J. Dent. Res.2018, 6(6):124-131 DOI:10.19177/jrd.v6e62018124-131
  • Singh Pal K, Gaikwad A v, Sarapur S, Kumar Jain S. Nanopartıcles In Prosthodontıcs – Boon Or Bane. IJOCR Apr - Jun 2015; Volume 3 Issue 2 Page 32-39.
  • Soumya Sree K, Abhishek V, S S, Srikanth L, Ramakrishna M, Lakshmi K. Nanotechnology in prosthodontics. IP Ann Prosthodont Restor Dent 2021;7(1):22-28 DOI: 10.18231/j.aprd.2021.005
  • Silikas N, Masouras K, Satterthwaite J, Watts DC. Effect of nanofillers in adhesive and aesthetic properties of dental resin-composites. Int. J. Nano and Biomaterials.2007;1(2):116-27. DOI: 10.1504/IJNBM.2007.016556
  • Chandki R, Kala M, Kiran Kumar N, Brigit B, Banthia P, Banthia R. “NANODENTISTRY”: Exploring the beauty of miniature. J Clin Exp Dent. 2012;4(2):e119-e124. Published 2012 Apr 1. DOI:10.4317/jced.50720
  • Abbas M, Sakr H. Wear performance of nano-composite artificial denture. Teeth Egypt. Dent. J. 2017;63(3):2535-2544. DOI:10.21608/edj.2017.76074.
  • Nam KY. In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J Adv Prosthodont. 2011;3(1):20-24. DOI:10.4047/jap.2011.3.1.20
  • Parameswari BD, Dhevishri S, Ranjith R, Annapoorni H. Nanoparticles in Prosthetic Materials: A Literature Review. J Pharm Bioallied Sci. 2021;13(Suppl 2):S917-S920. DOI:10.4103/jpbs.jpbs_280_21
  • Garner SJ, Nobbs AH, McNally LM, Barbour ME. An antifungal coating for dental silicones composed of chlorhexidine nanoparticles. J Dent. 2015;43(3):362-372. DOI:10.1016/j.jdent.2014.12.005
  • Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dent Mater. 2010;26(5):471-482. DOI:10.1016/j.dental.2010.01.005
  • Karimi MA, Hatefi A, Mashhadizadeh MH, Behjatmanesh-Ardakani R. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation. Int. Nano Lett.2011; 1, 43-51.
  • Moshaverinia A, Ansari S, Movasaghi Z, Billington RW, Darr JA, Rehman IU. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent Mater. 2008;24(10):1381-1390. DOI:10.1016/j.dental.2008.03.008
  • Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. J Dent. 2011;39(9):589-598. DOI:10.1016/j.jdent.2011.05.006
  • Jhaveri H M, Balaji P R. Nanotechnology: The future of dentistry. J Indian Prosthodont Soc 2005;5:15-7 DOI: 10.4103/0972-4052.16335
  • Omidkhoda M, Hasanzadeh N, Soleimani F, Shafaee H. Antimicrobial and physical properties of alginate impression material incorporated with silver nanoparticles. Dent Res J (Isfahan). 2019;16(6):372-376. Published 2019 Nov 12. DOI: 10.4103/1735-3327.270782
  • Meran Z, Besinis A, De Peralta T, Handy RD. Antifungal properties and biocompatibility of silver nanoparticle coatings on silicone maxillofacial prostheses in vitro. J Biomed Mater Res B Appl Biomater. 2018;106(3):1038-1051. DOI:10.1002/jbm.b.33917
  • Sonnahalli NK, Chowdhary R. Effect of nanoparticles on color stability and mechanical and biological properties of maxillofacial silicone elastomer: A systematic review. J Indian Prosthodont Soc. 2020;20(3):244-254. DOI:10.4103/jips.jips_429_19
  • Han Y, Kiat-amnuay S, Powers JM, Zhao Y. Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J Prosthet Dent. 2008;100(6):465-473. DOI:10.1016/S0022-3913(08)60266-8
  • Karakoca Nemli S, Bankoğlu Güngör M, Bağkur M, Turhan Bal B, Kasko Arıcı Y. In vitro evaluation of color and translucency reproduction of maxillofacial prostheses using a computerized system. J Adv Prosthodont. 2018;10(6):422-429. DOI:10.4047/jap.2018.10.6.422
  • Han Y, Zhao Y, Xie C, Powers JM, Kiat-amnuay S. Color stability of pigmented maxillofacial silicone elastomer: effects of nano-oxides as opacifiers. J Dent. 2010;38 Suppl 2:e100-e105. DOI:10.1016/j.jdent.2010.05.009
  • Zhang Y, Kelly JR. Dental Ceramics for Restoration and Metal Veneering. Dent Clin North Am. 2017;61(4):797-819. DOI:10.1016/j.cden.2017.06.005
  • Chaar MS, Witkowski S, Strub JR, Att W. Effect of veneering technique on the fracture resistance of zirconia fixed dental prostheses. J Oral Rehabil. 2013;40(1):51-59. DOI:10.1111/j.1365-2842.2012.02323.x
  • Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Kapusevska B, Gigovski N, Bajraktarova-Misevska C, Grozdanov A. Contemporary Dental Ceramic Materials, A Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use. Open Access Maced J Med Sci. 2018;6(9):1742-1755. Published 2018 Sep 24. DOI:10.3889/oamjms.2018.378
  • Yavuzyılmaz H, Turhan B, Bavbek B, Kurt E. Tam Porselen Sistemleri I. Gazi Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2005; 22(1): 41 - 48. (turkish)
  • Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-235. DOI:10.11607/ijp.4244
  • Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater. 2014;30(5):564-569. DOI:10.1016/j.dental.2014.02.019
  • Suzuki S. In vitro wear of nano-composite denture teeth. J Prosthodont. 2004;13(4):238-243. DOI:10.1111/j.1532-849X.2004.04043.x
  • Loyaga-Rendon PG, Takahashi H, Hayakawa I, Iwasaki N. Compositional characteristics and hardness of acrylic and composite resin artificial teeth. J Prosthet Dent. 2007;98(2):141-149. DOI:10.1016/S0022-3913(07)60047-X
  • GC America. Cerasmart Force Absorbing flexible nanoceramic CAD/CAM blok. Published [10 May 2022]. Accessed [17 July 2022]. https://www.gcamerica.com/products/digital/CERASMART/
  • Zahnfabrik V. ENAMIC. VITA Zahnfabrik. Published [2022].Accessed [17 July 2022]. https://www.vita-zahnfabrik.com/en/VITA-ENAMIC-24970.html
  • Shetty R, Shenoy K, Dandekeri S, Syedsuhaim K, Ragher M, Francis J, et al. Resin-Matrix Ceramics – An Overview. Int. J. Recent Sci. Res.2015 november;6,11,7414-7417, DOI: 10.24327/IJRSR
  • Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-147. DOI:10.1177/0022034517737483
  • Uno S, Okada M, Taketa H, Torii Y, Matsumoto T. Toughening of highly translucent zirconia by monoclinic ZrO2 and SiO2 particle coating. Dent Mater J. 2020;39(2):295-301. DOI:10.4012/dmj.2018-415
  • Zucuni CP, Ilha BD, May MM, May LG, Valandro LF. Grinding the intaglio surface of yttria partially- and fully-stabilized zirconia polycrystals restorations: Effect on their fatigue behavior. J Mech Behav Biomed Mater. 2020;109:103800. DOI:10.1016/j.jmbbm.2020.103800
  • Pereira GK, Silvestri T, Camargo R, et al. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging. Mater Sci Eng C Mater Biol Appl. 2016;63:70-77. DOI:10.1016/j.msec.2016.02.049
  • Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120(1):132-137. DOI:10.1016/j.prosdent.2017.08.004
  • Zhang F, Inokoshi M, Batuk M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):e327-e337. DOI:10.1016/j.dental.2016.09.025
  • Dapieve KS, Guilardi LSF, Silvestri T, Rippe MP, Pereira GKR, Valandro LF. Mechanical performance of Y-TZP monolithic ceramic after grinding and aging: Survival estimates and fatigue strength. J Mech Behav Biomed Mater. 2018;87:288-295. DOI:10.1016/j.jmbbm.2018.07.041
  • Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part II. Quintessence Int. 2017;48(6):441-450. DOI:10.3290/j.qi.a38157
  • Inokoshi M, Shimizu H, Nozaki K, et al. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater. 2018;34(3):508-518. DOI:10.1016/j.dental.2017.12.008
  • Mao L, Kaizer MR, Zhao M, Guo B, Song YF, Zhang Y. Graded Ultra-Translucent Zirconia (5Y-PSZ) for Strength and Functionalities. J Dent Res. 2018;97(11):1222-1228. DOI:10.1177/0022034518771287
  • Zucuni CP, Guilardi LF, Rippe MP, Pereira GKR, Valandro LF. Fatigue strength of yttria-stabilized zirconia polycrystals: Effects of grinding, polishing, glazing, and heat treatment. J Mech Behav Biomed Mater. 2017;75:512-520. DOI:10.1016/j.jmbbm.2017.06.016
  • Preis V, Schmalzbauer M, Bougeard D, Schneider-Feyrer S, Rosentritt M. Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation. J Dent. 2015;43(1):133-139. DOI:10.1016/j.jdent.2014.08.011
  • al-Wahadni A, Martin DM. Glazing and finishing dental porcelain: a literature review. J Can Dent Assoc. 1998;64(8):580-583.
  • Venkatesh G, Thenmuhil D, Manisha Vidyavathy S, Vinothan R. Effect of addition of nano zirconia in ceramic glazes. Adv Mat Res.984, 488 - 494, 2014. DOI:10.4028/www.scientific.net/AMR.984-985.488
  • Moosa JM, Abdulzahraa HG, Zaidan SA, Abed HY. Reinforcing glaze layer of restorative dental zirconia by adding nano alumina ceramics. NeuroQuantology 2021;19(6):73-78 DOI: 10.14704/nq.2021.19.6.NQ21071
  • Okada M, Taketa H, Hara ES, Torii Y, Irie M, Matsumoto T. Improvement of mechanical properties of Y-TZP by thermal annealing with monoclinic zirconia nanoparticle coating. Dent Mater. 2019;35(7):970-978. DOI:10.1016/j.dental.2019.04.002
  • Fujii Y, Okada M, Taketa H, Matsumoto T. Coating method for smooth and reinforced surface layer of highly translucent zirconia. Dent Mater J. 2021;40(2):532-537. DOI:10.4012/dmj.2020-108
There are 94 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review
Authors

Ezgi Gürsoy 0000-0002-3033-0436

Handan Yılmaz 0000-0001-5809-7018

Project Number -
Publication Date September 11, 2023
Submission Date July 18, 2022
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Gürsoy, E., & Yılmaz, H. (2023). Nanoparticles and Their Application in Prosthetic Dentistry. Clinical and Experimental Health Sciences, 13(3), 685-695. https://doi.org/10.33808/clinexphealthsci.1144865
AMA Gürsoy E, Yılmaz H. Nanoparticles and Their Application in Prosthetic Dentistry. Clinical and Experimental Health Sciences. September 2023;13(3):685-695. doi:10.33808/clinexphealthsci.1144865
Chicago Gürsoy, Ezgi, and Handan Yılmaz. “Nanoparticles and Their Application in Prosthetic Dentistry”. Clinical and Experimental Health Sciences 13, no. 3 (September 2023): 685-95. https://doi.org/10.33808/clinexphealthsci.1144865.
EndNote Gürsoy E, Yılmaz H (September 1, 2023) Nanoparticles and Their Application in Prosthetic Dentistry. Clinical and Experimental Health Sciences 13 3 685–695.
IEEE E. Gürsoy and H. Yılmaz, “Nanoparticles and Their Application in Prosthetic Dentistry”, Clinical and Experimental Health Sciences, vol. 13, no. 3, pp. 685–695, 2023, doi: 10.33808/clinexphealthsci.1144865.
ISNAD Gürsoy, Ezgi - Yılmaz, Handan. “Nanoparticles and Their Application in Prosthetic Dentistry”. Clinical and Experimental Health Sciences 13/3 (September 2023), 685-695. https://doi.org/10.33808/clinexphealthsci.1144865.
JAMA Gürsoy E, Yılmaz H. Nanoparticles and Their Application in Prosthetic Dentistry. Clinical and Experimental Health Sciences. 2023;13:685–695.
MLA Gürsoy, Ezgi and Handan Yılmaz. “Nanoparticles and Their Application in Prosthetic Dentistry”. Clinical and Experimental Health Sciences, vol. 13, no. 3, 2023, pp. 685-9, doi:10.33808/clinexphealthsci.1144865.
Vancouver Gürsoy E, Yılmaz H. Nanoparticles and Their Application in Prosthetic Dentistry. Clinical and Experimental Health Sciences. 2023;13(3):685-9.

14639   14640