Research Article
BibTex RIS Cite

Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability

Year 2024, Volume: 14 Issue: 4, 1028 - 1033, 29.12.2024
https://doi.org/10.33808/clinexphealthsci.1467615

Abstract

Objective: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) became one of the most important health problems of the 21st century. Non-structural protein-13 (nsp13/helicase) plays an important role in the replication of the viral genome and the viral life cycle. The SARS-CoV-2 genome has undergone thousands of mutations since the disease first appeared. Mutations pose a threat to the validity of therapeutics due to changes in protein structure. Modeling alterations caused by mutations in the viral proteome contributes to the development of effective antivirals. The changes in protein structure and stability caused by mutations seen in European isolates of SARS-CoV-2 were analyzed in the study with the aim of contributing to studies on the development of new anti-virals and the validity of existing therapeutics.
Methods: The changes in protein structure after mutation were modeled with deep learning algorithms. The alterations in protein stability were analyzed by SDM2, mCSM, DUET and DynaMut2.
Results: The mutation analysis revealed four (Pro77Leu, Gly170Ser, Tyr324Cys, and Arg392Cys) missense mutations in the nsp13 protein in European isolates of SARS-CoV-2. Mutations caused changes in protein structure (rmsd 0.294 Å) and stability (-.58 ≤ ΔΔG ≤ .003 kcal.mol-1). The atomic interactions formed by the mutant residues in the three-dimensional conformation of the protein have changed.
Conclusion: The mutations seen in European isolates for nsp13 of SARS-CoV-2 may lead to the emergence of different phenotypes in terms of viral activity. For this reason, the study may contribute to the success of the fight against the virus with different treatment approaches in different regions.

Ethical Statement

The conducted research is not related to either human or animal use.

Supporting Institution

The work has been supported by Malatya Turgut Özal University Scientific Research Projects Coordination Unit under grant number 2022/13.

Project Number

2022/13

Thanks

We would like to thank NCBI Virus database for providing proteome and genome data of SARS-CoV-2.

References

  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. DOI:10.1056/NEJMoa2001017.
  • Worldometer. Coronavirus case report. www.worldometers.info/coronavirus. https://www.worldometers.info/coronavirus/. Published 2024. Accessed March 24, 2024.
  • Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature 2020;579(7798):265-269. DOI:10.1038/s41586-020-2008-3.
  • Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23-50. DOI:10.1146/annurev.biochem.76.052305.115300.
  • Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication–transcription complex. Nat Struct Mol Biol. 2022;29(3):250-260. DOI:10.1038/s41594-022-00734-6.
  • Habtemariam S, Nabavi SF, Banach M, Berindan-Neagoe I, Sarkar K, Sil PC, Nabavi SM. Should We Try SARS-CoV-2 Helicase Inhibitors for COVID-19 Therapy? Arch Med Res. 2020;51(7):733-735. DOI:10.1016/j.arcmed.2020.05.024.
  • Abidi SH, Almansour NM, Amerzhanov D, Allemailem KS, Rafaqat W, Ibrahim MAA, Fleur P, Lukac M, Ali S. Repurposing potential of posaconazole and grazoprevir as inhibitors of SARS-CoV2 helicase. Sci Rep. 2021;11(1):10290. DOI:10.1038/s41598-021-89724-0.
  • Marx SK, Mickolajczyk KJ, Craig JM, Thomas CA, Pfeffer AM, Abell SJ, Carrasco JD, Franzi MC, Huang JR, Kim HC, Brinkerhoff H, Kapoor TM, Gundlach JH, Laszlo AH. Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution. Nucleic Acids Res. 2023;51(17):9266-9278. DOI:10.1093/nar/gkad660.
  • Steinhauer DA, Holland JJ. Rapid evolution of RNA viruses. Annu Rev Microbiol. 1987;41(1):409-431.
  • Mercatelli D, Giorgi FM. Geographic and genomic distribution of SARS-CoV-2 mutations. Front Microbiol. 2020;11:555497. DOI:10.3389/fmicb.2020.01800.
  • Tian D, Sun Y, Xu H, Ye Q. The emergence and epidemic characteristics of the highly mutated SARS‐CoV‐2 Omicron variant. J Med Virol. 2022;94(6):2376-2383.
  • Kannan SR, Spratt AN, Cohen AR, Naqvi SH, Chand HS, Quinn TP, Lorson CL, Byrareddy SN, Singh K. Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses. J Autoimmun. 2021;124:102715. DOI:10.1016/j.jaut.2021.102715.
  • Albanaz ATS, Rodrigues CHM, Pires DEV, Ascher DB. Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design. Expert Opin Drug Discov. 2017;12(6):553-563. DOI:10.1080/17460441.2017.1322579.
  • Akbulut E. SARS CoV-2 spike glycoprotein mutations and changes in protein structure. Trak Univ J Nat Sci. 2020;22(1):1-11. DOI:10.23902/trkjnat.774926.
  • NCBI. NCBI Virus. NCBI Virus Database. https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/. Published 2019. Accessed November 14, 2022.
  • Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33(2):511-518. DOI:10.1093/nar/gki198.
  • Mount DW. Using BLOSUM in sequence alignments. Cold Spring Harb Protoc. 2008;3(6):pdb-top39. DOI:10.1101/pdb.top39.
  • Mount DW. Using PAM matrices in sequence alignments. Cold Spring Harb Protoc. 2008;3(6):1-9. DOI:10.1101/pdb.top38.
  • Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027. DOI:10.1093/molbev/msab120.
  • Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021;373(6557):871-876. DOI:10.1126/science.abj8754.
  • Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J, Dunnett L, Gorrie-stone T, Skyner R, Fearon D, Schapira M, von Delft F, Gileadi O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Commun. 2021;12(1). DOI:10.1038/s41467-021-25166-6.
  • Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011;27(3):343-350. DOI:10.1093/bioinformatics/btq662.
  • Davis IW, Leaver-Fay A, Chen VB, Blocj JN, Kapral GJ, Wang X, Murray LW, Arendall 3rd WB, Snoeyink J, Richardson JS, Richardson DC. MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35(Suppl.2):W375-W383. DOI:10.1093/nar/gkm216.
  • Akbulut E. Investigation of changes in protein stability and substrate affinity of 3CL-protease of SARS-CoV-2 caused by mutations. Genet Mol Biol. 2022;45(2). DOI:10.1590/1678-4685-GMB-2021-0404.
  • Pires DEV, Ascher DB, Blundell TL. MCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014;30(3):335-342. DOI:10.1093/bioinformatics/btt691.
  • Wu S, Tian C, Liu P, Guo D, Zheng W, Huang X, Zhang Y, Liu L. Effects of SARS-CoV-2 mutations on protein structures and intraviral protein–protein interactions. J Med Virol. 2021;93(4):2132-2140. DOI:10.1002/jmv.26597.
  • Akbulut E. Changes in Interaction Between Accessory Protein 8 and IL-17RA in UK isolates caused by mutations in the SARS-CoV-2 Open Reading Frame 8. Int J Comput Exp Sci Eng. 2021;7(2):76-83. DOI:10.22399/ijcesen.935624.
  • Farkas C, Fuentes-Villalobos F, Garrido JL, Haigh J, Barría MI. Insights on early mutational events in SARS-CoV-2 virus reveal founder effects across geographical regions. PeerJ. 2020;2020(5):e9255. DOI:10.7717/peerj.9255.
  • Akbulut E. Mutations in Main protease of SARS CoV-2 decreased boceprevir affinity. Brazilian Arch Biol Technol. 2021;64. DOI:10.1590/1678-4324-2021200803.
  • Akbulut E, Kar B. SARS CoV-2 nsp1 mutasyonlarının protein yapıda ortaya çıkardığı değişimler. Int J Pure Appl Sci. 2020;6(2):68-76 (Turkish)
  • Akbulut E. Mutations in the SARS CoV-2 spike protein may cause functional changes in the protein quaternary structure. Turkish J Biochem. 2021;46(2):137-144. DOI:10.1515/tjb-2020-0290.
  • Seyran M, Takayama K, Uversky VN, Lundstrom K, Palù G, Sherchan SP, Attrish D, Rezaei N, Aljabali AAA, Ghosh S, Pizzol D, Chauhan G, Adadi P, Abd El-Aziz TM, Soares AG, Kandimalla R, Tambuwala M, Hassan SS, Azad GK, Choudhury PP, Baetas-da-Cruz W, Serrano-Aroca Â, Brufsky AM, Uhal BD. The structural basis of accelerated host cell entry by SARS-CoV-2†. FEBS J. 2021;288(17):5010-5020. DOI:10.1111/febs.15651.
  • Matyášek R, Kovařík A. Mutation patterns of human SARS-CoV-2 and bat RATG13 coronavirus genomes are strongly biased towards C>U transitions, indicating rapid evolution in their hosts. Genes (Basel). 2020;11(7):1-13. DOI:10.3390/genes11070761.
  • Wang R, Hozumi Y, Zheng YH, Yin C, Wei GW. Host immune response driving SARS-CoV-2 evolution. Viruses 2020;12(10):1095. DOI:10.3390/v12101095.
  • Akbulut E. The Effects of SARS CoV-2 nsp13 Mutations on the structure and stability of helicase in Chinese isolates. Eur J Biol. 2022;81(1):11-17. DOI:10.26650/EurJBiol.2022.1061858.
  • Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci. 2016;23(1):1-9. DOI:10.1186/s12929-016-0269-9.
  • Iuchi S. Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci. 2001;58(4):625-635. DOI:10.1007/PL00000885.
  • Filippova GN, Ulmer JE, Moore JM, Ward MD, Hu YJ, Loukinov DI, Pugacheva EM, Klenova EM, Grundy PE, Feinberg AP, Cleton-Jansen A, Moerland EW, Cornelisse CJ, Suzuki H, Komiya A, Lindblom A, Dorion-Bonnet F, Neiman PE, Morse 3rd HC, Collins SJ, Lobanenkov VV. Tumor-associated zinc finger mutations in the CTCF transcription factor selectively alter its DNA-binding specificity. Cancer Res. 2002;62(1):48-52.
  • Takaku M, Grimm SA, Roberts JD, Chrysovergis K, Bennett BD, Myers P, Perera L, Tucker CJ, Perou CM, Wade PA. GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun. 2018;9(1):1-14. DOI:10.1038/s41467-018-03478-4.
  • Munro D, Ghersi D, Singh M. Two critical positions in zinc finger domains are heavily mutated in three human cancer types. PLoS Comput Biol. 2018;14(6):e1006290. DOI:10.1371/journal.pcbi.1006290.
  • Ma J, Chen Y, Wu W, Chen Z. Structure and function of n-terminal zinc finger domain of SARS-CoV-2 NSP2. Virol Sin. 2021;36(5):1104-1112. DOI:10.1007/s12250-021-00431-6.
  • Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, Lou Z, Yan L, Zhang R, Rao Z. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci U S A. 2015;112(30):9436-9441. DOI:10.1073/pnas.1508686112.
  • Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers AJ, Agostini ML, Abu-Shmais A, Lu X, Darst SA, Campbell E, Denison MR. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. MBio. 2023;14(4):e0106023. DOI:10.1128/mbio.01060-23.
Year 2024, Volume: 14 Issue: 4, 1028 - 1033, 29.12.2024
https://doi.org/10.33808/clinexphealthsci.1467615

Abstract

Project Number

2022/13

References

  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. DOI:10.1056/NEJMoa2001017.
  • Worldometer. Coronavirus case report. www.worldometers.info/coronavirus. https://www.worldometers.info/coronavirus/. Published 2024. Accessed March 24, 2024.
  • Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature 2020;579(7798):265-269. DOI:10.1038/s41586-020-2008-3.
  • Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23-50. DOI:10.1146/annurev.biochem.76.052305.115300.
  • Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication–transcription complex. Nat Struct Mol Biol. 2022;29(3):250-260. DOI:10.1038/s41594-022-00734-6.
  • Habtemariam S, Nabavi SF, Banach M, Berindan-Neagoe I, Sarkar K, Sil PC, Nabavi SM. Should We Try SARS-CoV-2 Helicase Inhibitors for COVID-19 Therapy? Arch Med Res. 2020;51(7):733-735. DOI:10.1016/j.arcmed.2020.05.024.
  • Abidi SH, Almansour NM, Amerzhanov D, Allemailem KS, Rafaqat W, Ibrahim MAA, Fleur P, Lukac M, Ali S. Repurposing potential of posaconazole and grazoprevir as inhibitors of SARS-CoV2 helicase. Sci Rep. 2021;11(1):10290. DOI:10.1038/s41598-021-89724-0.
  • Marx SK, Mickolajczyk KJ, Craig JM, Thomas CA, Pfeffer AM, Abell SJ, Carrasco JD, Franzi MC, Huang JR, Kim HC, Brinkerhoff H, Kapoor TM, Gundlach JH, Laszlo AH. Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution. Nucleic Acids Res. 2023;51(17):9266-9278. DOI:10.1093/nar/gkad660.
  • Steinhauer DA, Holland JJ. Rapid evolution of RNA viruses. Annu Rev Microbiol. 1987;41(1):409-431.
  • Mercatelli D, Giorgi FM. Geographic and genomic distribution of SARS-CoV-2 mutations. Front Microbiol. 2020;11:555497. DOI:10.3389/fmicb.2020.01800.
  • Tian D, Sun Y, Xu H, Ye Q. The emergence and epidemic characteristics of the highly mutated SARS‐CoV‐2 Omicron variant. J Med Virol. 2022;94(6):2376-2383.
  • Kannan SR, Spratt AN, Cohen AR, Naqvi SH, Chand HS, Quinn TP, Lorson CL, Byrareddy SN, Singh K. Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses. J Autoimmun. 2021;124:102715. DOI:10.1016/j.jaut.2021.102715.
  • Albanaz ATS, Rodrigues CHM, Pires DEV, Ascher DB. Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design. Expert Opin Drug Discov. 2017;12(6):553-563. DOI:10.1080/17460441.2017.1322579.
  • Akbulut E. SARS CoV-2 spike glycoprotein mutations and changes in protein structure. Trak Univ J Nat Sci. 2020;22(1):1-11. DOI:10.23902/trkjnat.774926.
  • NCBI. NCBI Virus. NCBI Virus Database. https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/. Published 2019. Accessed November 14, 2022.
  • Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33(2):511-518. DOI:10.1093/nar/gki198.
  • Mount DW. Using BLOSUM in sequence alignments. Cold Spring Harb Protoc. 2008;3(6):pdb-top39. DOI:10.1101/pdb.top39.
  • Mount DW. Using PAM matrices in sequence alignments. Cold Spring Harb Protoc. 2008;3(6):1-9. DOI:10.1101/pdb.top38.
  • Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027. DOI:10.1093/molbev/msab120.
  • Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021;373(6557):871-876. DOI:10.1126/science.abj8754.
  • Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J, Dunnett L, Gorrie-stone T, Skyner R, Fearon D, Schapira M, von Delft F, Gileadi O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Commun. 2021;12(1). DOI:10.1038/s41467-021-25166-6.
  • Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011;27(3):343-350. DOI:10.1093/bioinformatics/btq662.
  • Davis IW, Leaver-Fay A, Chen VB, Blocj JN, Kapral GJ, Wang X, Murray LW, Arendall 3rd WB, Snoeyink J, Richardson JS, Richardson DC. MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35(Suppl.2):W375-W383. DOI:10.1093/nar/gkm216.
  • Akbulut E. Investigation of changes in protein stability and substrate affinity of 3CL-protease of SARS-CoV-2 caused by mutations. Genet Mol Biol. 2022;45(2). DOI:10.1590/1678-4685-GMB-2021-0404.
  • Pires DEV, Ascher DB, Blundell TL. MCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014;30(3):335-342. DOI:10.1093/bioinformatics/btt691.
  • Wu S, Tian C, Liu P, Guo D, Zheng W, Huang X, Zhang Y, Liu L. Effects of SARS-CoV-2 mutations on protein structures and intraviral protein–protein interactions. J Med Virol. 2021;93(4):2132-2140. DOI:10.1002/jmv.26597.
  • Akbulut E. Changes in Interaction Between Accessory Protein 8 and IL-17RA in UK isolates caused by mutations in the SARS-CoV-2 Open Reading Frame 8. Int J Comput Exp Sci Eng. 2021;7(2):76-83. DOI:10.22399/ijcesen.935624.
  • Farkas C, Fuentes-Villalobos F, Garrido JL, Haigh J, Barría MI. Insights on early mutational events in SARS-CoV-2 virus reveal founder effects across geographical regions. PeerJ. 2020;2020(5):e9255. DOI:10.7717/peerj.9255.
  • Akbulut E. Mutations in Main protease of SARS CoV-2 decreased boceprevir affinity. Brazilian Arch Biol Technol. 2021;64. DOI:10.1590/1678-4324-2021200803.
  • Akbulut E, Kar B. SARS CoV-2 nsp1 mutasyonlarının protein yapıda ortaya çıkardığı değişimler. Int J Pure Appl Sci. 2020;6(2):68-76 (Turkish)
  • Akbulut E. Mutations in the SARS CoV-2 spike protein may cause functional changes in the protein quaternary structure. Turkish J Biochem. 2021;46(2):137-144. DOI:10.1515/tjb-2020-0290.
  • Seyran M, Takayama K, Uversky VN, Lundstrom K, Palù G, Sherchan SP, Attrish D, Rezaei N, Aljabali AAA, Ghosh S, Pizzol D, Chauhan G, Adadi P, Abd El-Aziz TM, Soares AG, Kandimalla R, Tambuwala M, Hassan SS, Azad GK, Choudhury PP, Baetas-da-Cruz W, Serrano-Aroca Â, Brufsky AM, Uhal BD. The structural basis of accelerated host cell entry by SARS-CoV-2†. FEBS J. 2021;288(17):5010-5020. DOI:10.1111/febs.15651.
  • Matyášek R, Kovařík A. Mutation patterns of human SARS-CoV-2 and bat RATG13 coronavirus genomes are strongly biased towards C>U transitions, indicating rapid evolution in their hosts. Genes (Basel). 2020;11(7):1-13. DOI:10.3390/genes11070761.
  • Wang R, Hozumi Y, Zheng YH, Yin C, Wei GW. Host immune response driving SARS-CoV-2 evolution. Viruses 2020;12(10):1095. DOI:10.3390/v12101095.
  • Akbulut E. The Effects of SARS CoV-2 nsp13 Mutations on the structure and stability of helicase in Chinese isolates. Eur J Biol. 2022;81(1):11-17. DOI:10.26650/EurJBiol.2022.1061858.
  • Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci. 2016;23(1):1-9. DOI:10.1186/s12929-016-0269-9.
  • Iuchi S. Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci. 2001;58(4):625-635. DOI:10.1007/PL00000885.
  • Filippova GN, Ulmer JE, Moore JM, Ward MD, Hu YJ, Loukinov DI, Pugacheva EM, Klenova EM, Grundy PE, Feinberg AP, Cleton-Jansen A, Moerland EW, Cornelisse CJ, Suzuki H, Komiya A, Lindblom A, Dorion-Bonnet F, Neiman PE, Morse 3rd HC, Collins SJ, Lobanenkov VV. Tumor-associated zinc finger mutations in the CTCF transcription factor selectively alter its DNA-binding specificity. Cancer Res. 2002;62(1):48-52.
  • Takaku M, Grimm SA, Roberts JD, Chrysovergis K, Bennett BD, Myers P, Perera L, Tucker CJ, Perou CM, Wade PA. GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun. 2018;9(1):1-14. DOI:10.1038/s41467-018-03478-4.
  • Munro D, Ghersi D, Singh M. Two critical positions in zinc finger domains are heavily mutated in three human cancer types. PLoS Comput Biol. 2018;14(6):e1006290. DOI:10.1371/journal.pcbi.1006290.
  • Ma J, Chen Y, Wu W, Chen Z. Structure and function of n-terminal zinc finger domain of SARS-CoV-2 NSP2. Virol Sin. 2021;36(5):1104-1112. DOI:10.1007/s12250-021-00431-6.
  • Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, Lou Z, Yan L, Zhang R, Rao Z. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci U S A. 2015;112(30):9436-9441. DOI:10.1073/pnas.1508686112.
  • Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers AJ, Agostini ML, Abu-Shmais A, Lu X, Darst SA, Campbell E, Denison MR. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. MBio. 2023;14(4):e0106023. DOI:10.1128/mbio.01060-23.
There are 43 citations in total.

Details

Primary Language English
Subjects Infectious Diseases, Medical Genetics (Excl. Cancer Genetics)
Journal Section Articles
Authors

Mehmet Emin Alhan 0009-0002-9004-5191

Ekrem Akbulut 0000-0002-7526-9835

Project Number 2022/13
Publication Date December 29, 2024
Submission Date April 12, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Alhan, M. E., & Akbulut, E. (2024). Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability. Clinical and Experimental Health Sciences, 14(4), 1028-1033. https://doi.org/10.33808/clinexphealthsci.1467615
AMA Alhan ME, Akbulut E. Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability. Clinical and Experimental Health Sciences. December 2024;14(4):1028-1033. doi:10.33808/clinexphealthsci.1467615
Chicago Alhan, Mehmet Emin, and Ekrem Akbulut. “Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability”. Clinical and Experimental Health Sciences 14, no. 4 (December 2024): 1028-33. https://doi.org/10.33808/clinexphealthsci.1467615.
EndNote Alhan ME, Akbulut E (December 1, 2024) Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability. Clinical and Experimental Health Sciences 14 4 1028–1033.
IEEE M. E. Alhan and E. Akbulut, “Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability”, Clinical and Experimental Health Sciences, vol. 14, no. 4, pp. 1028–1033, 2024, doi: 10.33808/clinexphealthsci.1467615.
ISNAD Alhan, Mehmet Emin - Akbulut, Ekrem. “Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability”. Clinical and Experimental Health Sciences 14/4 (December 2024), 1028-1033. https://doi.org/10.33808/clinexphealthsci.1467615.
JAMA Alhan ME, Akbulut E. Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability. Clinical and Experimental Health Sciences. 2024;14:1028–1033.
MLA Alhan, Mehmet Emin and Ekrem Akbulut. “Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability”. Clinical and Experimental Health Sciences, vol. 14, no. 4, 2024, pp. 1028-33, doi:10.33808/clinexphealthsci.1467615.
Vancouver Alhan ME, Akbulut E. Non-Structural Protein-13 Mutations in European Isolates of SARS-CoV-2 Changed Protein Stability. Clinical and Experimental Health Sciences. 2024;14(4):1028-33.

14639   14640