Research Article
BibTex RIS Cite
Year 2019, , 98 - 102, 01.09.2019
https://doi.org/10.33205/cma.547221

Abstract

References

  • [1] T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1), 2014, 27-41.
  • [2] A. Aral, D. Inoan, I. Raşa, On the generalized Szasz-Mirakyan Operators, Results in Mathematics, 65(3-4), 2014, 441–452.
  • [3] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado, Shape preserving approximation by Bernstein-Type op- erators which fix polynomials, Appl. Math. Comp. 182, 2006, 1615-1622.
  • [4] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Asymptotic formulae via Korovkin-type result, Abstract and Applied Analysis, vol. 2012, Article ID 217464, 12 pages, 2012. https://doi.org/10.1155/2012/217464.
  • [5] D. Cárdenas-Morales, P. Garrancho ,I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62, 2011, 158–163.
  • [6] J. P. King, Positive linear operators which preserve x2, Acta. Math. Hungar., 99, 2003, 203–208

Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$

Year 2019, , 98 - 102, 01.09.2019
https://doi.org/10.33205/cma.547221

Abstract

In the paper we introduce a general class of linear positive approximation processes defined on bounded and unbounded intervals designed using an appropriate function. Voronovskaya type theorems are given for these new constructions. Some examples including well known operators are presented.

References

  • [1] T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1), 2014, 27-41.
  • [2] A. Aral, D. Inoan, I. Raşa, On the generalized Szasz-Mirakyan Operators, Results in Mathematics, 65(3-4), 2014, 441–452.
  • [3] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado, Shape preserving approximation by Bernstein-Type op- erators which fix polynomials, Appl. Math. Comp. 182, 2006, 1615-1622.
  • [4] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Asymptotic formulae via Korovkin-type result, Abstract and Applied Analysis, vol. 2012, Article ID 217464, 12 pages, 2012. https://doi.org/10.1155/2012/217464.
  • [5] D. Cárdenas-Morales, P. Garrancho ,I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62, 2011, 158–163.
  • [6] J. P. King, Positive linear operators which preserve x2, Acta. Math. Hungar., 99, 2003, 203–208
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Tuncer Acar

Ali Aral 0000-0002-2024-8607

Ioan Raşa This is me

Publication Date September 1, 2019
Published in Issue Year 2019

Cite

APA Acar, T., Aral, A., & Raşa, I. (2019). Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. Constructive Mathematical Analysis, 2(3), 98-102. https://doi.org/10.33205/cma.547221
AMA Acar T, Aral A, Raşa I. Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. CMA. September 2019;2(3):98-102. doi:10.33205/cma.547221
Chicago Acar, Tuncer, Ali Aral, and Ioan Raşa. “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”. Constructive Mathematical Analysis 2, no. 3 (September 2019): 98-102. https://doi.org/10.33205/cma.547221.
EndNote Acar T, Aral A, Raşa I (September 1, 2019) Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. Constructive Mathematical Analysis 2 3 98–102.
IEEE T. Acar, A. Aral, and I. Raşa, “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”, CMA, vol. 2, no. 3, pp. 98–102, 2019, doi: 10.33205/cma.547221.
ISNAD Acar, Tuncer et al. “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”. Constructive Mathematical Analysis 2/3 (September 2019), 98-102. https://doi.org/10.33205/cma.547221.
JAMA Acar T, Aral A, Raşa I. Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. CMA. 2019;2:98–102.
MLA Acar, Tuncer et al. “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”. Constructive Mathematical Analysis, vol. 2, no. 3, 2019, pp. 98-102, doi:10.33205/cma.547221.
Vancouver Acar T, Aral A, Raşa I. Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. CMA. 2019;2(3):98-102.

Cited By