Research Article
BibTex RIS Cite

Some recent and new fixed point results on orthogonal metric-like space

Year 2023, Volume: 6 Issue: 3, 184 - 197, 15.09.2023
https://doi.org/10.33205/cma.1360402

Abstract

In this paper, we give some recent and new results for some contraction mappings on O−complete metric-like space and also we give illustrative examples. At the end, we give an application to show the existence of a solution of a differential equation.

References

  • H. Aydi, A. Felhic and H.Afsharid: New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 780-788.
  • Ö. Acar, A. S. Özkapu: Multivalued rational type F−contraction on orthogonal metric space, Math. Found. Comput., 6 (3) (2023), 303–312.
  • Ö. Acar, E. Erdo˘gan: Some fixed point results for almost contraction on orthogonal metric space, Creat. Math. Inform., 31 (2) (2022), 147–153.
  • Ö. Acar, A. S. Özkapu and E. Erdo˘gan: Some Fixed Point Results on Orthogonal Metric Space, Bull. Comput. Appl. Math., 50 (1) (2023), 53–59.
  • S. S. Mohammed, M. Alansari, A. Azam and S. Kanwal: Fixed points of (φ, F) -weak contractions on metric-like spaces with applications to integral equations on time scales, Bol. Soc. Mat. Mex., 27 (2) (2021), ARTICLE ID: 39.
  • A. Amini-Harandi: Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages.
  • S. Banach, Sur les opérations dans les ensembles abstraits et leurs applicationsauxéquations int égrales, Fund. Math., 3 (1992), 133–181.
  • S. Kanokwan, W. Sintunavarat and Y. J. Cho: Fixed point theorems for orthogonal F−contraction mappings on O-complete metric space, J. Fixed Point Theory Appl., (2020) 22:10.
  • D. O’Regan: Equilibria for abstract economies in Hausdorff topological vector spaces, Constr. Math. Anal., 5 (2) (2022), 54–59.
  • E. Karapınar: A Short Survey on the Recent Fixed Point Results on b−Metric Spaces, Constr. Math. Anal., 1 (1) (2018), 15–44.
  • R. Heckmann: Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures, 7 (1999) 71–83.
  • M.E. Gordji, M. Rameani, M. De La Sen and Y. J. Cho: On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), 569–578.
  • M. E. Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, Journal of Linear and Topological Algebra (JLTA), 6 (3), 251–260.
  • N. B. Gungor: Extensions of Orthogonal p−Contraction on Orthogonal Metric Spaces, Symmetry, 14 2022, 746.
  • M. Jleli, B. Samet and C. Vetro: Fixed point theory in partial metric spaces via ϕ-fixed point’s concept in metric spaces, J. Inequal. Appl., 2014:426 (2014), 9 pp.
  • E. Karapınar, P. Salimi: Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 19 pages.
  • E. Karapınar, H. H. Alsulami and M. Noorwali: Some extensions for Geragthy type contractive mappings, Fixed Point Theory Appl., 2015 (2015), 22 pages.
  • S. G. Matthews: Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183–197.
  • M. Nazam, H. Aydi and A. Hussain: Existence theorems for (Ψ, Φ)−orthogonal interpolative contractions and an application to fractional differential equations, Optimization, 72 (7) (2023), 1899–1929.
  • M. Nazam, C. Park and M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Differential Equations, 2021:247 (2021).
  • S. Som, A. Dey Petru¸sel and K. Lakshmi: Some remarks on the metrizability of some metric-like structures, Carpathian J. Math., 37 (2) (2021), 265–272.
  • K., Sawangsup, W., Sintunavarat and Y. J., Cho: Fixed point theorems for orthogonal F−contraction mappings on O−complete metric spaces, J. Fixed Point Theorey Appl., 22:10 (2020).
  • K. Sawangsup, W. Sintunavarat: Fixed Point Results for Orthogonal Z−Contraction Mappings in O−Complete Metric Spaces, Int. J. Appl. Physics Math., 10 (1) (2020), 33–40.
  • B. Singh, V. Singh, I. Uddin and Ö. Acar: Fixed point theorems on an orthogonal metric space using Matkowski type contraction, Carpathian Math. Publ., 14 (1) (2022), 127–134.
  • A. Alsaadi, B. Singh, V. Singh and I. Uddin: Meir-Keeler type contraction in orthogonal M−metric spaces, Symmetry, 14 (9) (2022), 1856.
  • C. Vetro: A fixed-point problem with mixed-type contractive condition, Constr. Math. Anal., 3 (1) (2020), 45–52.
  • Z. Kadelburg, S. Radenovic: Notes on Some Recent Papers Concerning F−Contractions in b-Metric Spaces, Constr. Math. Anal., 1 (2) (2018), 108–112.
  • D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), ARTICLE ID: 94.
Year 2023, Volume: 6 Issue: 3, 184 - 197, 15.09.2023
https://doi.org/10.33205/cma.1360402

Abstract

References

  • H. Aydi, A. Felhic and H.Afsharid: New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 780-788.
  • Ö. Acar, A. S. Özkapu: Multivalued rational type F−contraction on orthogonal metric space, Math. Found. Comput., 6 (3) (2023), 303–312.
  • Ö. Acar, E. Erdo˘gan: Some fixed point results for almost contraction on orthogonal metric space, Creat. Math. Inform., 31 (2) (2022), 147–153.
  • Ö. Acar, A. S. Özkapu and E. Erdo˘gan: Some Fixed Point Results on Orthogonal Metric Space, Bull. Comput. Appl. Math., 50 (1) (2023), 53–59.
  • S. S. Mohammed, M. Alansari, A. Azam and S. Kanwal: Fixed points of (φ, F) -weak contractions on metric-like spaces with applications to integral equations on time scales, Bol. Soc. Mat. Mex., 27 (2) (2021), ARTICLE ID: 39.
  • A. Amini-Harandi: Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages.
  • S. Banach, Sur les opérations dans les ensembles abstraits et leurs applicationsauxéquations int égrales, Fund. Math., 3 (1992), 133–181.
  • S. Kanokwan, W. Sintunavarat and Y. J. Cho: Fixed point theorems for orthogonal F−contraction mappings on O-complete metric space, J. Fixed Point Theory Appl., (2020) 22:10.
  • D. O’Regan: Equilibria for abstract economies in Hausdorff topological vector spaces, Constr. Math. Anal., 5 (2) (2022), 54–59.
  • E. Karapınar: A Short Survey on the Recent Fixed Point Results on b−Metric Spaces, Constr. Math. Anal., 1 (1) (2018), 15–44.
  • R. Heckmann: Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures, 7 (1999) 71–83.
  • M.E. Gordji, M. Rameani, M. De La Sen and Y. J. Cho: On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), 569–578.
  • M. E. Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, Journal of Linear and Topological Algebra (JLTA), 6 (3), 251–260.
  • N. B. Gungor: Extensions of Orthogonal p−Contraction on Orthogonal Metric Spaces, Symmetry, 14 2022, 746.
  • M. Jleli, B. Samet and C. Vetro: Fixed point theory in partial metric spaces via ϕ-fixed point’s concept in metric spaces, J. Inequal. Appl., 2014:426 (2014), 9 pp.
  • E. Karapınar, P. Salimi: Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 19 pages.
  • E. Karapınar, H. H. Alsulami and M. Noorwali: Some extensions for Geragthy type contractive mappings, Fixed Point Theory Appl., 2015 (2015), 22 pages.
  • S. G. Matthews: Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183–197.
  • M. Nazam, H. Aydi and A. Hussain: Existence theorems for (Ψ, Φ)−orthogonal interpolative contractions and an application to fractional differential equations, Optimization, 72 (7) (2023), 1899–1929.
  • M. Nazam, C. Park and M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Differential Equations, 2021:247 (2021).
  • S. Som, A. Dey Petru¸sel and K. Lakshmi: Some remarks on the metrizability of some metric-like structures, Carpathian J. Math., 37 (2) (2021), 265–272.
  • K., Sawangsup, W., Sintunavarat and Y. J., Cho: Fixed point theorems for orthogonal F−contraction mappings on O−complete metric spaces, J. Fixed Point Theorey Appl., 22:10 (2020).
  • K. Sawangsup, W. Sintunavarat: Fixed Point Results for Orthogonal Z−Contraction Mappings in O−Complete Metric Spaces, Int. J. Appl. Physics Math., 10 (1) (2020), 33–40.
  • B. Singh, V. Singh, I. Uddin and Ö. Acar: Fixed point theorems on an orthogonal metric space using Matkowski type contraction, Carpathian Math. Publ., 14 (1) (2022), 127–134.
  • A. Alsaadi, B. Singh, V. Singh and I. Uddin: Meir-Keeler type contraction in orthogonal M−metric spaces, Symmetry, 14 (9) (2022), 1856.
  • C. Vetro: A fixed-point problem with mixed-type contractive condition, Constr. Math. Anal., 3 (1) (2020), 45–52.
  • Z. Kadelburg, S. Radenovic: Notes on Some Recent Papers Concerning F−Contractions in b-Metric Spaces, Constr. Math. Anal., 1 (2) (2018), 108–112.
  • D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), ARTICLE ID: 94.
There are 28 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Özlem Acar 0000-0001-6052-4357

Early Pub Date September 14, 2023
Publication Date September 15, 2023
Published in Issue Year 2023 Volume: 6 Issue: 3

Cite

APA Acar, Ö. (2023). Some recent and new fixed point results on orthogonal metric-like space. Constructive Mathematical Analysis, 6(3), 184-197. https://doi.org/10.33205/cma.1360402
AMA Acar Ö. Some recent and new fixed point results on orthogonal metric-like space. CMA. September 2023;6(3):184-197. doi:10.33205/cma.1360402
Chicago Acar, Özlem. “Some Recent and New Fixed Point Results on Orthogonal Metric-Like Space”. Constructive Mathematical Analysis 6, no. 3 (September 2023): 184-97. https://doi.org/10.33205/cma.1360402.
EndNote Acar Ö (September 1, 2023) Some recent and new fixed point results on orthogonal metric-like space. Constructive Mathematical Analysis 6 3 184–197.
IEEE Ö. Acar, “Some recent and new fixed point results on orthogonal metric-like space”, CMA, vol. 6, no. 3, pp. 184–197, 2023, doi: 10.33205/cma.1360402.
ISNAD Acar, Özlem. “Some Recent and New Fixed Point Results on Orthogonal Metric-Like Space”. Constructive Mathematical Analysis 6/3 (September 2023), 184-197. https://doi.org/10.33205/cma.1360402.
JAMA Acar Ö. Some recent and new fixed point results on orthogonal metric-like space. CMA. 2023;6:184–197.
MLA Acar, Özlem. “Some Recent and New Fixed Point Results on Orthogonal Metric-Like Space”. Constructive Mathematical Analysis, vol. 6, no. 3, 2023, pp. 184-97, doi:10.33205/cma.1360402.
Vancouver Acar Ö. Some recent and new fixed point results on orthogonal metric-like space. CMA. 2023;6(3):184-97.