Research Article
BibTex RIS Cite

Çeşitli Anestezik İlaçların Antimikrobiyal ve Antioksidatif Özelliklerinin Belirlenmesi

Year 2023, , 31 - 37, 30.06.2023
https://doi.org/10.31594/commagene.1197918

Abstract

Genel anestezi sırasında çeşitli nedenlerle oksidatif stres ile antioksidan savunma sistemi arasındaki denge bozulur. Öte yandan, antioksidan etkileri sayesinde bazı anestetiklerin patolojik durumların neden olduğu oksidatif stresten korunmaları önerilmiştir. Bu çalışmada ameliyat sonrası olası etkileri ortaya çıkarmak için yaygın olarak kullanılan anestezik ilaçların potansiyel antimikrobiyal ve antioksidatif aktiviteleri değerlendirildi. Kirby-Bauer disk difüzyon yöntemine göre steril fizyolojik tuzlu su ile seyreltilmiş ticari olarak satın alınan anestezik ilaçların antimikrobiyal aktiviteleri araştırıldı. Ayrıca minimum inhibitör konsantrasyon ve minimum bakterisidal konsantrasyonlar belirlendi. İlaçların antioksidan potansiyelleri 2,2 difenil-1-pikrilhidrazil (DPPH) ve hidroksil (OH●) radikal süpürücü yöntemleri ile tarandı. Ana bileşen olarak ketamin hidroklorür içeren test edilen ilaçlardan biri olan Ketalar’ın, test edilen tüm patojenik mikroorganizmalar üzerinde inhibisyon etkisi olduğu bulundu. Aynı zamanda, Mivacron ve Pental Sodium, Micrococcus luteus üzerinde en büyük inhibisyon bölgelerini oluşturmuştur. Beklendiği gibi, Propofol, test edilen organizmaların çoğunda antimikrobiyal aktivite göstermemiş olup, antioksidan aktivitesi diğer ilaçlar arasında en yüksek değere sahiptir. Ultiva, Blok-L ve Zolamid'in DPPH serbest radikali ve hidroksil radikal süpürücü aktiviteleri için hesaplanan SC50 değerleri Propofol'e çok yakın olduğu belirlendi. Bu ilaçların birçok durumda anestezi amaçlı kullanımı sırasında oluşabilecek kontaminasyon ve oksidatif stres riskini baskılayabileceği sonucuna varılabilir.

References

  • Altan, H.A., Bonabi, E., Kesici, S., Sezer, H., & Ucar, V.B. (2019). Growth of microorganisms in propofol and mixture of propofol, lidocaine and fentanyl. Journal of the College of Physicians and Surgeons Pakistan, 29(9), 828-832. https://doi.org/10.29271/jcpsp.2019.09.828
  • Andrews, J.M. (2001). Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy, 48(suppl_1), 5-16. https://doi.org/10.1093/jac/48.suppl_1.5
  • Apan, T.Z., Apan, A., Şahin, Ş., & Çakırca, M. (2007). Antibacterial activity of remifentanil and mixtures of remifentanil and propofol. Journal of Clinical Anesthesia, 19(5), 346-350. https://doi.org/10.1016/j.jclinane.2007.02.005
  • Bilgin, T.E. (2013). History of Pioneers and Discoveries at Anesthesia. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 3(2), 37-52.
  • Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181 (4617), 1199.
  • Bostan, H., Tomak, Y., Karaoglu, S.A., Erdivanli, B., & Hanci, V. (2014). In vitro evaluation of antimicrobial features of vasopressors. Revista Brasileira de Anestesiologia, 64, 84-88. https://doi.org/10.1016/j.bjan.2013.02.001
  • Büyükkoçak, Ü., Koç, F., Göçmen J.S., Çağlayan, O., & Aykaç, E. (2011). Investigation of in vitro antibacterial activity of suxamethonium chloride and rocuronium bromide. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, 13(1), 15-18.
  • Clinical and Laboratory Standards Institute. (2021). CLSI Performance standard for antimicrobial susceptibility testing, M100, 31th ed. Clinical and Laboratory Standards Institute, Malvern, Pennsylvania.
  • Clinical and Laboratory Standards Institute. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7, 11th ed.
  • Cole, D.C., Baslanti, T.O., Gravenstein, N.L., & Gravenstein, N. (2015). Leaving more than your fingerprint on the intravenous line: a prospective study on propofol anesthesia and implications of stopcock contamination. Anesthesia and Analgesia, 120(4), 861. https://doi.org/10.1213/ANE.0b013e318292ed45
  • Damitz, R.A. (2015). Novel Microemulsion and Macroemulsion Formulations for Propofol Therapy. [Doctoral dissertation, University of Florida].
  • Dantas, P.E.., Uesugui, E., Nishiwaki–Dantas, M.C., & Mimica, L.J. (2000). Antibacterial activity of anesthetic solutions and preservatives: an in vitro comparative study. Cornea, 19(3), 353-354. https://doi.org/10.1097/00003226-200005000-00019
  • Erbas, M., Demiraran, Y., Yildirim, H.A., Sezen, G., Iskender, A., Karagoz, I., & Kandis, H. (2015). Comparison of effects on the oxidant/antioxidant system of sevoflurane, desflurane and propofol infusion during general anesthesia. Revista Brasileira de Anestesiologia, 65, 68-72. https://doi.org/10.1016/j.bjane.2014.05.004
  • Fadhel, M., Patel, S., Liu, E., Levitt, M., & Asif, A. (2019). Saccharomyces cerevisiae fungemia in a critically ill patient with acute cholangitis and long term probiotic use. Medical Mycology Case Reports, 23, 23-25. https://doi.org/10.1016/j.mmcr.2018.11.003
  • Gargiulo, D.A., Mitchell, S.J., Sheridan, J., Short, T.G., Swift, S., Torrie, J., Webster, C.S. & Merry, A.F. (2016). Microbiological contamination of drugs during their administration for anesthesia in the operating room. Anesthesiology, 124(4), 785-794. https://doi.org/10.1097/ALN.0000000000001041
  • Hagerman, A.E., Riedl, K.M., Jones, G.A., Sovik, K.N., Ritchard, N.T., Hartzfeld, P.W., & Riechel, T.L. (1998). High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural and Food Chemistry, 46(5), 1887-1892. https://doi.org/10.1021/jf970975b
  • Hanci, V., Cömert, F., Ayoğlu, H., Kulah, C., Yurtlu, S., & Turan, I.O. (2011). Evaluation of the antimicrobial effects of atracurium, rocuronium and mivacurium. Antimicrobial effects of muscle relaxants. Drugs and Therapy Studies, 1(1), e2-e2. https://doi.org/10.4081/dts.2011.e2
  • Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15, 55-63.
  • Jaan, A., Munshi, R., Sareen, K., Parmar, E., Thakur, P., & Anindita, A. (2020). Local Anesthesia-Solution to Pain: An Overview. Journal of Current Medical Research and Opinion, 3(07), 537-548. https://doi.org/10.15520/jcmro.v3i07.317
  • Johnson, S.M., Saint John, B.E., & Dine, A.P. (2008). Local anesthetics as antimicrobial agents: a review. Surgical Infections, 9(2), 205-213. https://doi.org/10.1089/sur.2007.036
  • Kesici, S., Demirci, M., & Kesici, U. (2020). Antimicrobial effects of fentanyl and bupivacaine: an in vitro study. Revista Brasileira de Anestesiologia, 70, 357-363. https://doi.org/10.1016/j.bjane.2020.04.026
  • Kesici, U., Demirci, M., & Yılmaz, A. (2021). Antimicrobial effect of local anesthetics on Helicobacter pylori. Journal of Surgery and Medicine, 5(3), 230-233. https://doi.org/10.28982/josam.741301
  • Memiş, D., Otkun, M., Bahar, M., & Süt, N. (2009). Growth of Escherichia coli in atracurium, rocuronium, mivacurium, cisatracurium, pancuronium, and vecuronium. Trakya Üniversitesi Tıp Fakültesi Dergisi. 26(2),100-104.
  • Nouri, F., Karami, P., Zarei, O., Kosari, F., Alikhani, M.Y., Zandkarimi, …& Taheri, M. (2020). Prevalence of common nosocomial infections and evaluation of antibiotic resistance patterns in patients with secondary infections in Hamadan, Iran. Infection and Drug Resistance, 13, 2365-2374. https://doi.org/10.2147/IDR.S259252
  • Ozkan, F., Şenayli, Y., Ozyurt, H., Erkorkmaz, U., & Bostan, B. (2012). Antioxidant effects of propofol on tourniquet-induced ischemia-reperfusion injury: an experimental study. Journal of Surgical Research, 176(2), 601-607. https://doi.org/10.1016/j.jss.2011.10.032
  • Pérez-Torrado, R., & Querol, A. (2016). Opportunistic strains of Saccharomyces cerevisiae: A potential risk sold in food products. Frontiers in Microbiology, 6, 1522. https://doi.org/10.3389/fmicb.2015.01522
  • Razavi, B. M., & Fazly Bazzaz, B. S. (2019). A review and new insights to antimicrobial action of local anesthetics. European Journal of Clinical Microbiology & Infectious Diseases, 38(6), 991-1002. https://doi.org/10.1007/s10096-018-03460-4
  • Sivaci, R., Kahraman, A., Serteser, M., Sahin, D.A., & Dilek, O. N. (2006). Cytotoxic effects of volatile anesthetics with free radicals undergoing laparoscopic surgery. Clinical biochemistry, 39(3), 293-298. https://doi.org/10.1016/j.clinbiochem.2006.01.001
  • Srivastava, V.K., Gautam, S., Bhushan, S., Kumar, S., Bhatia, V. K., Chandra, G., & Singh, S. (2014). A study of recovery from general anaesthesia after preoperative administration of antimicrobial. Indian Journal of Scientific Research, 5(1), 31-38.
  • Tulgar, S., Alasehir, E.A., & Selvi, O. (2018). The antimicrobial activity of ephedrine and admixture of ephedrine and propofol: an in vitro study. Revista Brasileira de Anestesiologia, 68, 69-74. https://doi.org/10.1016/j.bjane.2017.06.004
  • Volti, G.L., Basile, F., Murabito, P., Galvano, F., Di Giacomo, C., Gazzolo, D., …& Biondi, A. (2008). Antioxidant properties of anesthetics: the biochemist, the surgeon and the anesthetist. La Clinica Terapeutica, 159(6), 463-469.
  • Zorrilla-Vaca, A., Arevalo, J.J., Escandón-Vargas, K., Soltanifar, D., & Mirski, M.A. (2016). Infectious disease risk associated with contaminated propofol anesthesia, 1989–2014. Emerging Infectious Diseases, 22(6), 981-992. https://doi.org/10.3201/eid2206.150376

Determination of Antimicrobial and Antioxidative Properties of Several Anesthetic Drugs

Year 2023, , 31 - 37, 30.06.2023
https://doi.org/10.31594/commagene.1197918

Abstract

For various reasons, the balance between oxidative stress and the antioxidative defence system is disturbed during general anesthesia. On the other hand, thanks to their antioxidant effect, certain anesthetics have been suggested to protect from oxidative stress caused due to pathological states. In this study, potential antimicrobial and antioxidative activities of commonly used anesthetic drugs were evaluated to reveal possible effects after surgery. The antimicrobial activities of commercially purchased anesthetic drugs diluted with sterile physiological saline were investigated according to the Kirby-Bauer disc diffusion method. Furthermore, minimum inhibitory concentration and minimum bactericidal concentrations were determined. Antioxidative potentials of the drugs were screened according to 2,2 diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl (OH●) radical scavenging assays. One of the tested drugs, Ketalar, containing ketamine hydrochloride was found to have an inhibition effect on all tested pathogenic microorganisms. At the same time, Mivacron and Pental Sodium formed the most significant inhibition zones on Micrococcus luteus. As expected, Propofol had no antimicrobial activity on most tested organisms. However, its antioxidant activity was the highest among the other drugs. Calculated SC50 values for DPPH-free and hydroxyl radical scavenging activities of Ultiva, Blok-L, and Zolamid were very close to Propofol. It can be concluded that using these drugs for anesthesia may suppress the risk of contamination and oxidative stress that may occur during use in many cases.

References

  • Altan, H.A., Bonabi, E., Kesici, S., Sezer, H., & Ucar, V.B. (2019). Growth of microorganisms in propofol and mixture of propofol, lidocaine and fentanyl. Journal of the College of Physicians and Surgeons Pakistan, 29(9), 828-832. https://doi.org/10.29271/jcpsp.2019.09.828
  • Andrews, J.M. (2001). Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy, 48(suppl_1), 5-16. https://doi.org/10.1093/jac/48.suppl_1.5
  • Apan, T.Z., Apan, A., Şahin, Ş., & Çakırca, M. (2007). Antibacterial activity of remifentanil and mixtures of remifentanil and propofol. Journal of Clinical Anesthesia, 19(5), 346-350. https://doi.org/10.1016/j.jclinane.2007.02.005
  • Bilgin, T.E. (2013). History of Pioneers and Discoveries at Anesthesia. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 3(2), 37-52.
  • Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181 (4617), 1199.
  • Bostan, H., Tomak, Y., Karaoglu, S.A., Erdivanli, B., & Hanci, V. (2014). In vitro evaluation of antimicrobial features of vasopressors. Revista Brasileira de Anestesiologia, 64, 84-88. https://doi.org/10.1016/j.bjan.2013.02.001
  • Büyükkoçak, Ü., Koç, F., Göçmen J.S., Çağlayan, O., & Aykaç, E. (2011). Investigation of in vitro antibacterial activity of suxamethonium chloride and rocuronium bromide. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, 13(1), 15-18.
  • Clinical and Laboratory Standards Institute. (2021). CLSI Performance standard for antimicrobial susceptibility testing, M100, 31th ed. Clinical and Laboratory Standards Institute, Malvern, Pennsylvania.
  • Clinical and Laboratory Standards Institute. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7, 11th ed.
  • Cole, D.C., Baslanti, T.O., Gravenstein, N.L., & Gravenstein, N. (2015). Leaving more than your fingerprint on the intravenous line: a prospective study on propofol anesthesia and implications of stopcock contamination. Anesthesia and Analgesia, 120(4), 861. https://doi.org/10.1213/ANE.0b013e318292ed45
  • Damitz, R.A. (2015). Novel Microemulsion and Macroemulsion Formulations for Propofol Therapy. [Doctoral dissertation, University of Florida].
  • Dantas, P.E.., Uesugui, E., Nishiwaki–Dantas, M.C., & Mimica, L.J. (2000). Antibacterial activity of anesthetic solutions and preservatives: an in vitro comparative study. Cornea, 19(3), 353-354. https://doi.org/10.1097/00003226-200005000-00019
  • Erbas, M., Demiraran, Y., Yildirim, H.A., Sezen, G., Iskender, A., Karagoz, I., & Kandis, H. (2015). Comparison of effects on the oxidant/antioxidant system of sevoflurane, desflurane and propofol infusion during general anesthesia. Revista Brasileira de Anestesiologia, 65, 68-72. https://doi.org/10.1016/j.bjane.2014.05.004
  • Fadhel, M., Patel, S., Liu, E., Levitt, M., & Asif, A. (2019). Saccharomyces cerevisiae fungemia in a critically ill patient with acute cholangitis and long term probiotic use. Medical Mycology Case Reports, 23, 23-25. https://doi.org/10.1016/j.mmcr.2018.11.003
  • Gargiulo, D.A., Mitchell, S.J., Sheridan, J., Short, T.G., Swift, S., Torrie, J., Webster, C.S. & Merry, A.F. (2016). Microbiological contamination of drugs during their administration for anesthesia in the operating room. Anesthesiology, 124(4), 785-794. https://doi.org/10.1097/ALN.0000000000001041
  • Hagerman, A.E., Riedl, K.M., Jones, G.A., Sovik, K.N., Ritchard, N.T., Hartzfeld, P.W., & Riechel, T.L. (1998). High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural and Food Chemistry, 46(5), 1887-1892. https://doi.org/10.1021/jf970975b
  • Hanci, V., Cömert, F., Ayoğlu, H., Kulah, C., Yurtlu, S., & Turan, I.O. (2011). Evaluation of the antimicrobial effects of atracurium, rocuronium and mivacurium. Antimicrobial effects of muscle relaxants. Drugs and Therapy Studies, 1(1), e2-e2. https://doi.org/10.4081/dts.2011.e2
  • Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15, 55-63.
  • Jaan, A., Munshi, R., Sareen, K., Parmar, E., Thakur, P., & Anindita, A. (2020). Local Anesthesia-Solution to Pain: An Overview. Journal of Current Medical Research and Opinion, 3(07), 537-548. https://doi.org/10.15520/jcmro.v3i07.317
  • Johnson, S.M., Saint John, B.E., & Dine, A.P. (2008). Local anesthetics as antimicrobial agents: a review. Surgical Infections, 9(2), 205-213. https://doi.org/10.1089/sur.2007.036
  • Kesici, S., Demirci, M., & Kesici, U. (2020). Antimicrobial effects of fentanyl and bupivacaine: an in vitro study. Revista Brasileira de Anestesiologia, 70, 357-363. https://doi.org/10.1016/j.bjane.2020.04.026
  • Kesici, U., Demirci, M., & Yılmaz, A. (2021). Antimicrobial effect of local anesthetics on Helicobacter pylori. Journal of Surgery and Medicine, 5(3), 230-233. https://doi.org/10.28982/josam.741301
  • Memiş, D., Otkun, M., Bahar, M., & Süt, N. (2009). Growth of Escherichia coli in atracurium, rocuronium, mivacurium, cisatracurium, pancuronium, and vecuronium. Trakya Üniversitesi Tıp Fakültesi Dergisi. 26(2),100-104.
  • Nouri, F., Karami, P., Zarei, O., Kosari, F., Alikhani, M.Y., Zandkarimi, …& Taheri, M. (2020). Prevalence of common nosocomial infections and evaluation of antibiotic resistance patterns in patients with secondary infections in Hamadan, Iran. Infection and Drug Resistance, 13, 2365-2374. https://doi.org/10.2147/IDR.S259252
  • Ozkan, F., Şenayli, Y., Ozyurt, H., Erkorkmaz, U., & Bostan, B. (2012). Antioxidant effects of propofol on tourniquet-induced ischemia-reperfusion injury: an experimental study. Journal of Surgical Research, 176(2), 601-607. https://doi.org/10.1016/j.jss.2011.10.032
  • Pérez-Torrado, R., & Querol, A. (2016). Opportunistic strains of Saccharomyces cerevisiae: A potential risk sold in food products. Frontiers in Microbiology, 6, 1522. https://doi.org/10.3389/fmicb.2015.01522
  • Razavi, B. M., & Fazly Bazzaz, B. S. (2019). A review and new insights to antimicrobial action of local anesthetics. European Journal of Clinical Microbiology & Infectious Diseases, 38(6), 991-1002. https://doi.org/10.1007/s10096-018-03460-4
  • Sivaci, R., Kahraman, A., Serteser, M., Sahin, D.A., & Dilek, O. N. (2006). Cytotoxic effects of volatile anesthetics with free radicals undergoing laparoscopic surgery. Clinical biochemistry, 39(3), 293-298. https://doi.org/10.1016/j.clinbiochem.2006.01.001
  • Srivastava, V.K., Gautam, S., Bhushan, S., Kumar, S., Bhatia, V. K., Chandra, G., & Singh, S. (2014). A study of recovery from general anaesthesia after preoperative administration of antimicrobial. Indian Journal of Scientific Research, 5(1), 31-38.
  • Tulgar, S., Alasehir, E.A., & Selvi, O. (2018). The antimicrobial activity of ephedrine and admixture of ephedrine and propofol: an in vitro study. Revista Brasileira de Anestesiologia, 68, 69-74. https://doi.org/10.1016/j.bjane.2017.06.004
  • Volti, G.L., Basile, F., Murabito, P., Galvano, F., Di Giacomo, C., Gazzolo, D., …& Biondi, A. (2008). Antioxidant properties of anesthetics: the biochemist, the surgeon and the anesthetist. La Clinica Terapeutica, 159(6), 463-469.
  • Zorrilla-Vaca, A., Arevalo, J.J., Escandón-Vargas, K., Soltanifar, D., & Mirski, M.A. (2016). Infectious disease risk associated with contaminated propofol anesthesia, 1989–2014. Emerging Infectious Diseases, 22(6), 981-992. https://doi.org/10.3201/eid2206.150376
There are 32 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Elif Çil 0000-0003-1420-8729

Ömer Ertürk 0000-0001-5837-6893

Özlem Özdemir 0000-0001-5088-4316

Melek Çol Ayvaz 0000-0001-5155-5784

Early Pub Date May 9, 2023
Publication Date June 30, 2023
Submission Date November 1, 2022
Acceptance Date April 4, 2023
Published in Issue Year 2023

Cite

APA Çil, E., Ertürk, Ö., Özdemir, Ö., Çol Ayvaz, M. (2023). Determination of Antimicrobial and Antioxidative Properties of Several Anesthetic Drugs. Commagene Journal of Biology, 7(1), 31-37. https://doi.org/10.31594/commagene.1197918
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.