Genotypic and Phenotypic Evaluation of Heavy Metal Resistance of Enterococcal Isolates from Seafood Products for Consumption
Year 2023,
, 58 - 64, 30.06.2023
Mine Çardak
,
Sine Özmen Toğay
,
Mustafa Ay
Abstract
The aim of this study was to genotypically and phenotypically evaluate the resistance to heavy metal salts of enterococci isolated from fisheries sold in our country's market for food safety. Using concentrations computed as 1000 ppm of seven heavy metal salts, copper (Cu+2), nickel (Ni+2), cadmium (Cd+2), zinc (Zn+2), lead (Pb+2), chromium (Cr+2), and iron (Fe+2) heavy metal resistance (MIK) tests were conducted on each of the enterococci isolates. As a result of the analyses made in this context, resistance to heavy metal salts such as copper, lead, nickel, and cadmium in many isolates and the presence of copper (tcrB) and cadmium (cadA) resistance genes in some isolates were determined. It is considered that the isolates and the fishery products from which these isolates were obtained may carry risks in terms of food safety and public health. In addition, genes encoding heavy metal resistance are also effective in antibiotic resistance. For this reason, it is stated that these microorganisms gain importance not only in applications such as bioremediation and biomining but also in the healthcare sector.
Supporting Institution
TUBİTAK
Thanks
: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the project number 215O374. We would like to thank Prof. Dr. Gülşen ALTUĞ to have assisting us in the identification of bacterial isolates with the bacterial automation device VITEK 2 Compact System.
References
- Abou-Shanab, R.A.I., Van Berkum, P., & Angle, J.S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68(2), 360-367.
- Akinbowale, O.L., Peng, H., Grant, P., & Barton, M.D. (2007). Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. International Journal of Antimicrobial Agents, 30, 177–82.
- Akkan, T., Kaya, A., & Dincer, S. (2013). Antibiotic Levels and heavy metal resistance in gram-negative bacteria isolated from seawater, Iskenderun Organized Industrial Zone. Journal of Applied Biological Sciences, 7(1), 10-14.
- Aktan, Y., Tan, S., & Icgen, B. (2013). Characterization of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance. Environmental Monitoring Assessement, 185, 5285–5293.
- Alonso, A., Sanchez, P., & Martínez, J.L. (2001). Environmental selection of antibiotic resistance genes: Minireview. Environmental microbiology, 3(1), 1-9.
- Baixas-Nogueras, S., Bover-Cid, S., Veciana-Nogués, M.T., & Vidal-Carou, M.C. (2003). Amino acid-decarboxylase activity in bacteria associated with Mediterranean hake spoilage. European Food Research and Technology, 217, 164-167.
- Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K., & Wei, M.Q. (2012). Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology, 112, 1193–1206.
- Bruins, M.R., Kapil, S., & Oehme, F.W. 2000. Microbial resistance to metals in the environment. Ecotoxicology and environmental safety, 45(3), 198-207.
- Cancilla, M.R., Powell, I.B., Hillier, A.J., & Davidson, B.E. (1992). Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Applied and Environmental Microbiology, 58(5), 1772-1775.
- Çardak, M., Özmen Toğay, S., Ay, M., Karaalioğlu, O., Erol, Ö., & Bağcı, U. (2022). Antibiotic resistance and virulence genes in Enterococcus species isolated from raw and processed seafood. Journal of Food Science and Technology, 59(7), 2884-2893.
- De Niederhäusern, S., Bondi, M., Anacarso, I., Iseppi, R., Sabia, C., Bitonte, F., & Messi, P. (2013). Antibiotics and heavy metals resistance and other biological characters in enterococci isolated from surface water of Monte Cotugno Lake (Italy). Journal of Environmental Science and Health, Part A, 48(8), 939-946.
- Di Cesare, A., Vignaroli, C., Luna, G.M., Pasquaroli, S., & Biavasco, F. (2012). Antibiotic-resistant enterococci in seawater and sediments from a coastal fish farm. Microbial Drug Resistance, 18(5), 502-509.
- Foulquie Moreno, M.F., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of enterococci in food and health. International journal of food microbiology, 106(1), 1-24.
- Françoise, L. (2010). Occurrence and role of lactic acid bacteria in seafood products. Food microbiology, 27(6), 698-709.
- Franz, C.M., Holzapfel, W.H., & Stiles, M.E. (1999). Enterococci at the crossroads of food safety?. International journal of food microbiology, 47(1-2), 1-24.
- Franz, C.M., Stiles, M.E., Schleifer, K.H., & Holzapfel, W.H. (2003). Enterococci in foods—a conundrum for food safety. International journal of food microbiology, 88(2-3), 105-122.
- Geiselbrecht, A.D., Herwig, R.P., Deming, J.W, &Staley, J.T. (1996). Enumeration and phlogenetic analyses PAH degrading marine bacteria from Pudget Sound sediments. Applied and Environmental Microbiology, 62, 3344-3349.
- Hammad, A.H., & Shimamoto, T. (2014). Genetic characterization of antibiotic resistance and virulence factors in Enterococcus spp. from Japanese retail ready-to-eat raw fish. Food Microbiology, 38, 62–66. https://doi.org/10.1016/j.fm.2013.08.010
- Harwood, V.J., Delahoya, N.C., Ulrich, R.M., Kramer, M.F., Whitlock, J.E., Garey, J.R., & Lim, D.V. (2004). Molecular confirmation of Enterococcus faecalis and E. faecium from clinical, faecal and environmental sources. Letters in applied microbiology, 38(6), 476-482.
- Harwood, V.J., Whitlock, J., & Withington, V. (2000). Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters. Applied and Environmental Microbiology, 66(9), 3698-3704.
- Hasman, H., Kempf, I., Chidaine, B., Cariolet, R., Ersbøll, A.K., Houe, H., ... & Aarestrup, F.M. (2006). Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. Applied and Environmental Microbiology, 72(9), 5784-5789.
- Karaalioğlu, O., Togay, S.O., Mustafa, A.Y., Soysal, G., Çardak, M., Bagcı, U., & Tınaztepe, Ö.E. (2019). Çiğ balık örneklerinden izole edilen Enterococcus faecium ve Enterococcus faecalis suşlarının gıda güvenliği yönünden bazı özelliklerinin değerlendirilmesi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 76(3), 341-352.
- Matyar, F., & Dinçer, S. (2010). Doğu Akdeniz'den İzole Edilen Enterococcus faecalis Bakterilerinin Antibiyotik ve Ağır Metal Dirençliliği. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 5(2), 172-178.
- Matyar, F., Eraslan, B., Akkan, T., Kaya, A., & Dinçer, S. (2009). İskenderun Körfezi balıklarından izole edilen bakterilerde antibiyotik ve ağır metal dirençliliklerinin araştırılması. Biyoloji Bilimleri Araştırma Dergisi, 2(2), 1-5.
- Pasquaroli, S., Di Cesare, A., Vignaroli, C., Conti, G., Citterio, B., & Biavasco, F. (2014). Erythromycin-and copper-resistant Enterococcus hirae from marine sediment and co-transfer of erm (B) and tcrB to human Enterococcus faecalis. Diagnostic microbiology and infectious disease, 80(1), 26-28.
- Pinto, A.L., Fernandes, M., Pinto, C., Albano, H., Castilho, F., Teixeira, P., & Gibbs, P.A. (2009). Characterization of anti-Listeria bacteriocins isolated from shellfish: potential antimicrobials to control non-fermented seafood. International Journal of Food Microbiology, 129(1), 50-58.
- Roosa, S., Wattiez, R., Prygiel, E., Lesven, L., Billon, G., & Gillan, D.C. (2014). Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environmental Pollution, 189, 143-151.
- Rouch, D.A., Lee, B.T., & Morby, A.P. (1995). Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Journal of Industrial Microbiology and Biotechnology, 14(2), 132-141.
- Silveira, E., Freitas, A.R., Antunes, P., Barros, M., Campos, J., Coque, T. M., ... & Novais, C. 2014. Co-transfer of resistance to high concentrations of copper and first-line antibiotics among Enterococcus from different origins (humans, animals, the environment and foods) and clonal lineages. Journal of Antimicrobial Chemotherapy, 69(4), 899-906.
- Sinton, L.W., Donnison, A.M., & Hastie, C.M. (1993). Faecal streptococci as faecal pollution indicators: a review. Part II: Sanitary significance, survival, and use. New Zealand Journal of Marine and Freshwater Research, 27(1), 117-137.
- Valenzuela, A.S., Benomar, N., Abriouel, H., Cañamero, M.M., & Gálvez, A. (2010). Isolation and identification of Enterococcus faecium from seafoods: Antimicrobial resistance and production of bacteriocin-like substances. Food Microbiology, 27, 955-961.
- Yavuz, O., & Sarıgül, N. (2016). Toprak ve sucul ortamlardaki ağır metal kirliliği ve ağır metal dirençli mikroorganizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(1), 44-51.
Tüketime Sunulan Su Ürünlerinde Enterokok İzolatlarında Ağır Metal Direncinin Genotipik ve Fenotipik Olarak Değerlendirilmesi
Year 2023,
, 58 - 64, 30.06.2023
Mine Çardak
,
Sine Özmen Toğay
,
Mustafa Ay
Abstract
Bu çalışmanın amacı, ülkemiz piyasasında satışa sunulan su ürünlerinden izole edilen enterokokların gıda güvenliğine uygunluğunun ağır metal tuzlarına dirençlilik özelliklerini genotipik ve fenotipik olarak değerlendirmektedir. Enterokok izolatlarının her biri için bakır (Cu+2), nikel (Ni+2), kadmiyum (Cd+2), çinko (Zn+2), kurşun (Pb+2), krom (Cr+2) ve demir (Fe+2) olmak üzere 7 adet ağır metal tuzları 1000 ppm olarak hesaplanan konsantrasyonlar kullanılarak ağır metal dirençlilik (MIK) testleri yapılmıştır. Bu kapsamda yapılan analizler sonucunda test edilen pek çok izolatlarda bakır, kurşun, nikel, kadmiyum gibi ağır metal tuzlarına karşı direnç özellikleri ve bazı izolatlarda bakır (tcrB) ve kadmiyum (cadA) direnç genlerinin varlığı da belirlenmiştir. İzolatların ve bu izolatların elde edildiği su ürünü örneklerinin gıda güvenliği ve halk sağlığı yönüyle risk taşıyabileceği düşünülmüştür. Bunun yanında ağır metal dirençliliğini kodlayan genler aynı zamanda antibiyotik dirençliliğinde de etkilidir. Bu nedenle bu mikroorganizmalar sadece biyoremediasyon, biyomadencilik gibi uygulamalar için değil sağlık sektöründe de önem kazandığı belirtilmiştir.
References
- Abou-Shanab, R.A.I., Van Berkum, P., & Angle, J.S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68(2), 360-367.
- Akinbowale, O.L., Peng, H., Grant, P., & Barton, M.D. (2007). Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. International Journal of Antimicrobial Agents, 30, 177–82.
- Akkan, T., Kaya, A., & Dincer, S. (2013). Antibiotic Levels and heavy metal resistance in gram-negative bacteria isolated from seawater, Iskenderun Organized Industrial Zone. Journal of Applied Biological Sciences, 7(1), 10-14.
- Aktan, Y., Tan, S., & Icgen, B. (2013). Characterization of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance. Environmental Monitoring Assessement, 185, 5285–5293.
- Alonso, A., Sanchez, P., & Martínez, J.L. (2001). Environmental selection of antibiotic resistance genes: Minireview. Environmental microbiology, 3(1), 1-9.
- Baixas-Nogueras, S., Bover-Cid, S., Veciana-Nogués, M.T., & Vidal-Carou, M.C. (2003). Amino acid-decarboxylase activity in bacteria associated with Mediterranean hake spoilage. European Food Research and Technology, 217, 164-167.
- Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K., & Wei, M.Q. (2012). Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology, 112, 1193–1206.
- Bruins, M.R., Kapil, S., & Oehme, F.W. 2000. Microbial resistance to metals in the environment. Ecotoxicology and environmental safety, 45(3), 198-207.
- Cancilla, M.R., Powell, I.B., Hillier, A.J., & Davidson, B.E. (1992). Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Applied and Environmental Microbiology, 58(5), 1772-1775.
- Çardak, M., Özmen Toğay, S., Ay, M., Karaalioğlu, O., Erol, Ö., & Bağcı, U. (2022). Antibiotic resistance and virulence genes in Enterococcus species isolated from raw and processed seafood. Journal of Food Science and Technology, 59(7), 2884-2893.
- De Niederhäusern, S., Bondi, M., Anacarso, I., Iseppi, R., Sabia, C., Bitonte, F., & Messi, P. (2013). Antibiotics and heavy metals resistance and other biological characters in enterococci isolated from surface water of Monte Cotugno Lake (Italy). Journal of Environmental Science and Health, Part A, 48(8), 939-946.
- Di Cesare, A., Vignaroli, C., Luna, G.M., Pasquaroli, S., & Biavasco, F. (2012). Antibiotic-resistant enterococci in seawater and sediments from a coastal fish farm. Microbial Drug Resistance, 18(5), 502-509.
- Foulquie Moreno, M.F., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of enterococci in food and health. International journal of food microbiology, 106(1), 1-24.
- Françoise, L. (2010). Occurrence and role of lactic acid bacteria in seafood products. Food microbiology, 27(6), 698-709.
- Franz, C.M., Holzapfel, W.H., & Stiles, M.E. (1999). Enterococci at the crossroads of food safety?. International journal of food microbiology, 47(1-2), 1-24.
- Franz, C.M., Stiles, M.E., Schleifer, K.H., & Holzapfel, W.H. (2003). Enterococci in foods—a conundrum for food safety. International journal of food microbiology, 88(2-3), 105-122.
- Geiselbrecht, A.D., Herwig, R.P., Deming, J.W, &Staley, J.T. (1996). Enumeration and phlogenetic analyses PAH degrading marine bacteria from Pudget Sound sediments. Applied and Environmental Microbiology, 62, 3344-3349.
- Hammad, A.H., & Shimamoto, T. (2014). Genetic characterization of antibiotic resistance and virulence factors in Enterococcus spp. from Japanese retail ready-to-eat raw fish. Food Microbiology, 38, 62–66. https://doi.org/10.1016/j.fm.2013.08.010
- Harwood, V.J., Delahoya, N.C., Ulrich, R.M., Kramer, M.F., Whitlock, J.E., Garey, J.R., & Lim, D.V. (2004). Molecular confirmation of Enterococcus faecalis and E. faecium from clinical, faecal and environmental sources. Letters in applied microbiology, 38(6), 476-482.
- Harwood, V.J., Whitlock, J., & Withington, V. (2000). Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters. Applied and Environmental Microbiology, 66(9), 3698-3704.
- Hasman, H., Kempf, I., Chidaine, B., Cariolet, R., Ersbøll, A.K., Houe, H., ... & Aarestrup, F.M. (2006). Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. Applied and Environmental Microbiology, 72(9), 5784-5789.
- Karaalioğlu, O., Togay, S.O., Mustafa, A.Y., Soysal, G., Çardak, M., Bagcı, U., & Tınaztepe, Ö.E. (2019). Çiğ balık örneklerinden izole edilen Enterococcus faecium ve Enterococcus faecalis suşlarının gıda güvenliği yönünden bazı özelliklerinin değerlendirilmesi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 76(3), 341-352.
- Matyar, F., & Dinçer, S. (2010). Doğu Akdeniz'den İzole Edilen Enterococcus faecalis Bakterilerinin Antibiyotik ve Ağır Metal Dirençliliği. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 5(2), 172-178.
- Matyar, F., Eraslan, B., Akkan, T., Kaya, A., & Dinçer, S. (2009). İskenderun Körfezi balıklarından izole edilen bakterilerde antibiyotik ve ağır metal dirençliliklerinin araştırılması. Biyoloji Bilimleri Araştırma Dergisi, 2(2), 1-5.
- Pasquaroli, S., Di Cesare, A., Vignaroli, C., Conti, G., Citterio, B., & Biavasco, F. (2014). Erythromycin-and copper-resistant Enterococcus hirae from marine sediment and co-transfer of erm (B) and tcrB to human Enterococcus faecalis. Diagnostic microbiology and infectious disease, 80(1), 26-28.
- Pinto, A.L., Fernandes, M., Pinto, C., Albano, H., Castilho, F., Teixeira, P., & Gibbs, P.A. (2009). Characterization of anti-Listeria bacteriocins isolated from shellfish: potential antimicrobials to control non-fermented seafood. International Journal of Food Microbiology, 129(1), 50-58.
- Roosa, S., Wattiez, R., Prygiel, E., Lesven, L., Billon, G., & Gillan, D.C. (2014). Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environmental Pollution, 189, 143-151.
- Rouch, D.A., Lee, B.T., & Morby, A.P. (1995). Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Journal of Industrial Microbiology and Biotechnology, 14(2), 132-141.
- Silveira, E., Freitas, A.R., Antunes, P., Barros, M., Campos, J., Coque, T. M., ... & Novais, C. 2014. Co-transfer of resistance to high concentrations of copper and first-line antibiotics among Enterococcus from different origins (humans, animals, the environment and foods) and clonal lineages. Journal of Antimicrobial Chemotherapy, 69(4), 899-906.
- Sinton, L.W., Donnison, A.M., & Hastie, C.M. (1993). Faecal streptococci as faecal pollution indicators: a review. Part II: Sanitary significance, survival, and use. New Zealand Journal of Marine and Freshwater Research, 27(1), 117-137.
- Valenzuela, A.S., Benomar, N., Abriouel, H., Cañamero, M.M., & Gálvez, A. (2010). Isolation and identification of Enterococcus faecium from seafoods: Antimicrobial resistance and production of bacteriocin-like substances. Food Microbiology, 27, 955-961.
- Yavuz, O., & Sarıgül, N. (2016). Toprak ve sucul ortamlardaki ağır metal kirliliği ve ağır metal dirençli mikroorganizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(1), 44-51.