Review
BibTex RIS Cite

Genotoxic and Mutagenic Effects of Mycotoxins: A Review

Year 2019, Volume: 3 Issue: 2, 132 - 161, 20.12.2019
https://doi.org/10.31594/commagene.633418

Abstract

In
this article, genotoxic and mutagenic effects of mycotoxins that are produced
by various fungus species have been reviewed. A total of 259 mycotoxins were
found in the literature. Genotoxic effects of 109 of these were investigated.
Among the studied mycotoxins, only actinomycin D, aflatoxin, alternariol,
chrysazin (dantron), citrinin, fumonisin, mytomycin C, nivalenol, ochratoxin A,
patulin, sterigmatocystin, versicolorin A and B, vomitoxin, and zearalenone
have sufficient number of studies that present or prove their genotoxic
effects. Additional studies are required in order to determine whether other
mycotoxins have any genotoxic effects. The current study provides valuable
information regarding studied mycotoxins. Therefore, it may lead researchers for
designing future mycotoxin-related studies that have never been studied.









References

  • Abd-Allah, G.A., el-Fayoumi, R.I., Smith, M.J., Heckmann, R.A., & O’Neill, K.L. (1999). A comparative evaluation of aflatoxin B1 genotoxicity in fish models using the Comet assay. Mutation Research, 446(2), 181–188. https://doi.org/10.1016/s1383-5718(99)00181-3
  • Abdel-Wahhab, M.A., El-Nekeety, A.A., Salman, A.S., Abdel-Aziem, S.H., Mehaya, F.M., & Hassan, N.S. (2018). Protective capabilities of silymarin and inulin nanoparticles against hepatic oxidative stress, genotoxicity and cytotoxicity of Deoxynivalenol in rats. Toxicon, 142, 1–13. https://doi.org/10.1016/j.toxicon.2017.12.045
  • Abid-Essefi, S., Baudrimont, I., Hassen, W., Ouanes, Z., Mobio, T.A., Anane, R., … Bacha, H. (2003). DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: Prevention by Vitamin E. Toxicology, 192(2–3), 237–248. https://doi.org/10.1016/s0300-483x(03)00329-9
  • Aichinger, G., Beisl, J., & Marko, D. (2017). Genistein and delphinidin antagonize the genotoxic effects of the mycotoxin alternariol in human colon carcinoma cells. Molecular Nutrition & Food Research, 61(2). https://doi.org/10.1002/mnfr.201600462
  • Alarcón-Herrera, N., Flores-Maya, S., Bellido, B., García-Bores, A. M., Mendoza, E., Ávila-Acevedo, G., & Hernández-Echeagaray, E. (2017). Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food and Chemical Toxicology, 109(2), 1018–1025. https://doi.org/10.1016/j.fct.2017.04.048
  • Albertini, R.J., Anderson, D., Douglas, G.R., Hagmar, L., Hemminki, K., Merlo, F., … Aitio, A. (2000). IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutation Research, 463(2), 111–172. https://doi.org/10.1016/s1383-5742(00)00049-1
  • Aleksic, B., Draghi, M., Ritoux, S., Bailly, S., Lacroix, M., Oswald, I.P., … Robine, E. (2017). Aerosolization of mycotoxins after growth of toxinogenic fungi on wallpaper. Applied and Environmental Microbiology, 83(16). https://doi.org/10.1128/AEM.01001-17
  • Ali, R., Guo, X., Lin, H., Khan, Q.M., Ismail, M., Waheed, U., … Bhalli, J.A. (2014). Mutant frequency in comparison to oxidative DNA damage induced by ochratoxin A in L5178Y tk+/- (3.7.2C) mouse lymphoma cells. Drug and Chemical Toxicology, 37(2), 227–232. https://doi.org/10.3109/01480545.2013.838775
  • Ali, R., Mittelstaedt, R.A., Shaddock, J.G., Ding, W., Bhalli, J.A., Khan, Q.M., & Heflich, R.H. (2011). Comparative analysis of micronuclei and DNA damage induced by Ochratoxin A in two mammalian cell lines. Mutation Research, 723(1), 58–64. https://doi.org/10.1016/j.mrgentox.2011.04.002
  • Alves, I., Oliveira, N.G., Laires, A., Rodrigues, A.S., & Rueff, J. (2000). Induction of micronuclei and chromosomal aberrations by the mycotoxin patulin in mammalian cells: Role of ascorbic acid as a modulator of patulin clastogenicity. Mutagenesis, 15(3), 229–234. https://doi.org/10.1093/mutage/15.3.229
  • Anisha, C., Sachidanandan, P., & Radhakrishnan, E.K. (2018). Endophytic Paraconiothyrium sp. from zingiber officinale rosc. displays broad-spectrum antimicrobial activity by production of danthron. Current Microbiology, 75(3), 343–352. https://doi.org/10.1007/s00284-017-1387-7
  • Anninou, N., Chatzaki, E., Papachristou, F., Pitiakoudis, M., & Simopoulos, C. (2014). Mycotoxins’ activity at toxic and sub-toxic concentrations: Differential cytotoxic and genotoxic effects of single and combined administration of sterigmatocystin, ochratoxin A and citrinin on the hepatocellular cancer cell line Hep3B. International Journal of Environmental Research and Public Health, 11(2), 1855–1872. https://doi.org/10.3390/ijerph110201855
  • Aoyama, K., Iwahori, K., & Miyata, N. (2003). Application of Euglena gracilis cells to comet assay: Evaluation of DNA damage and repair. Mutation Research, 538(1–2), 155–162. https://doi.org/10.1016/s1383-5718(03)00113-x
  • Aranda, M., Pérez-Alzola, L.P., Ellahueñe, M.F., & Sepúlveda, C. (2000). Assessment of in vitro mutagenicity in Salmonella and in vivo genotoxicity in mice of the mycotoxin fumonisin B(1). Mutagenesis, 15(6), 469–471. https://doi.org/10.1093/mutage/15.6.469
  • Arbillaga, L., Azqueta, A., Ezpeleta, O., & López de Cerain, A. (2007). Oxidative DNA damage induced by Ochratoxin A in the HK-2 human kidney cell line: Evidence of the relationship with cytotoxicity. Mutagenesis, 22(1), 35–42. https://doi.org/10.1093/mutage/gel049
  • Atherton, G, & Betb, B. (2019). Secondary metabolites. Retrieved from http://www.aspergillus.org.uk/metabolite-images/secondary-metabolites
  • Atienzar, F.A., & Jha, A.N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: A critical review. Mutation Research, 613(2–3), 76–102. https://doi.org/10.1016/j.mrrev.2006.06.001
  • Atienzar, F.A., Cordi, B., Donkin, M.E., Evenden, A.J., Jha, A.N., & Depledge, M.H. (2000). Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmata. Aquatic Toxicology, 50(1), 1–12. https://doi.org/10.1016/S0166-445X(99)00100-9
  • Auffray, Y., & Boutibonnes, P. (1987). Genotoxic activity of some mycotoxins using the SOS chromotest. Mycopathologia, 100(1), 49–53. https://doi.org/10.1007/BF00769568
  • Aupanun, S., Poapolathep, S., Giorgi, M., Imsilp, K., & Poapolathep, A. (2017). An overview of the toxicology and toxicokinetics of fusarenon-X, a type B trichothecene mycotoxin. The Journal of Veterinary Medical Science, 79(1), 6–13. https://doi.org/10.1292/jvms.16-0008
  • Awad, W.A., Ghareeb, K., Dadak, A., Gille, L., Staniek, K., Hess, M., & Böhm, J. (2012). Genotoxic effects of deoxynivalenol in broiler chickens fed low-protein feeds. Poultry Science, 91(3), 550–555. https://doi.org/10.3382/ps.2011-01742
  • Awad, Wageha A., Ghareeb, K., Dadak, A., Hess, M., & Böhm, J. (2014). Single and combined effects of deoxynivalenol mycotoxin and a microbial feed additive on lymphocyte DNA damage and oxidative stress in broiler chickens. PLOS ONE, 9(1), e88028. https://doi.org/10.1371/journal.pone.0088028
  • Aydın, M., Arslan, M., Rencüzoğulları, E., Gözaydın, C., Genç, A., & Bayram, S. (2017). Investigation of XRCC1 Arg399Gln, Arg280His, and Arg194Trp polymorphisms effects on the induction of micronucleus by Aflatoxin B1 in in vitro. Gene Reports, 9, 1–6. https://doi.org/10.1016/j.genrep.2017.08.002
  • Ayed-Boussema, I., Ouanes, Z., Bacha, H., & Abid, S. (2007). Toxicities induced in cultured cells exposed to zearalenone: Apoptosis or mutagenesis? Journal of Biochemical and Molecular Toxicology, 21(3), 136–144. https://doi.org/10.1002/jbt.20171
  • Ayed, Y., Ayed-Boussema, I., Ouanes, Z., & Bacha, H. (2011). In vitro and in vivo induction of chromosome aberrations by alpha- and beta-zearalenols: Comparison with zearalenone. Mutation Research, 726(1), 42–46. https://doi.org/10.1016/j.mrgentox.2011.08.003
  • Banerjee, S., & Paruthy, S.B. (2016). Preclinical and clinical perspective on fungal metabolites and their analogs as anticancer agents – from bench to bedside. In J.M. Mérillon & K.G. Ramawat (Eds.), Fungal Metabolites (pp. 1–32). https://doi.org/10.1007/978-3-319-19456-1_22-1
  • Bartholomew, R.M., & Ryan, D.S. (1980). Lack of mutagenicity of some phytoestrogens in the Salmonella/mammalian microsome assay. Mutation Research, 78(4), 317–321. https://doi.org/10.1016/0165-1218(80)90036-1
  • Batiste-Alentorn, M., Xamena, N., Creus, A., & Marcos, R. (1995). Genotoxicity testing of five compounds in three Drosophila short-term somatic assays. Mutation Research, 341(3), 161–167. https://doi.org/10.1016/0165-1218(95)90006-3
  • Bayram, S., Rencüzoğulları, E., Almas, A.M., & Genç, A. (2016). Effect of p53 Arg72Pro polymorphism on the induction of micronucleus by aflatoxin B1 in in vitro in human blood lymphocytes. Drug and Chemical Toxicology, 39(3), 331–337. https://doi.org/10.3109/01480545.2015.1121275
  • Becerril, C., Ferrero, M., Sanz, F., & Castaño, A. (1999). Detection of mitomycin C-induced genetic damage in fish cells by use of RAPD. Mutagenesis, 14(5), 449–456. https://doi.org/10.1093/mutage/14.5.449
  • Behm, C., Degen, G.H., & Föllmann, W. (2009). The Fusarium toxin enniatin B exerts no genotoxic activity, but pronounced cytotoxicity in vitro. Molecular Nutrition & Food Research, 53(4), 423–430. https://doi.org/10.1002/mnfr.200800183
  • Bełdowski, J., Been, R., & Turmus, E.K. (2017). Towards the Monitoring of Dumped Munitions Threat (MODUM): A Study of Chemical Munitions Dumpsites in the Baltic Sea. Dordrecht, The Netherlands, Springer.
  • Beljanski, M., Le Goff, L., & Beljanski, M. (1982). In vitro screening of carcinogens using DNA of the His- mutant of Salmonella typhimurium. Experimental Cell Biology, 50(5), 271–280.
  • Bendele, A.M., Neal, S.B., Oberly, T.J., Thompson, C.Z., Bewsey, B.J., Hill, L.E., … Probst, G.S. (1985). Evaluation of ochratoxin A for mutagenicity in a battery of bacterial and mammalian cell assays. Food and Chemical Toxicology, 23(10), 911–918. https://doi.org/10.1016/0278-6915(85)90107-3
  • Benedict, W.F., Baker, M.S., Haroun, L., Choi, E., & Ames, B.N. (1977). Mutagenicity of cancer chemotherapeutic agents in the Salmonella/microsome test. Cancer Research, 37(7 Pt 1), 2209–2213.
  • Bennett, J.W. & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516.
  • Bensassi, F., El Golli-Bennour, E., Abid-Essefi, S., Bouaziz, C., Hajlaoui, M.R., & Bacha, H. (2009). Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells. Toxicology, 264(1–2), 104–109. https://doi.org/10.1016/j.tox.2009.07.020
  • Bhat, P.V., Pandareesh, M.D., Khanum, F., & Tamatam, A. (2016). Cytotoxic Effects of Ochratoxin A in Neuro-2a Cells: Role of Oxidative Stress Evidenced by N-acetylcysteine. Frontiers in Microbiology, 7, 1142. https://doi.org/10.3389/fmicb.2016.01142
  • Bjeldanes, L.F., & Chew, H. (1979). Mutagenicity of 1,2-dicarbonyl compounds: Maltol, kojic acid, diacetyl and related substances. Mutation Research, 67(4), 367–371. https://doi.org/10.1016/0165-1218(79)90034-X
  • Blanc, P.J., Laussac, J.P., Le Bars, J., Le Bars, P., Loret, M.O., Pareilleux, A., … Goma, G. (1995). Characterization of monascidin A from Monascus as citrinin. International Journal of Food Microbiology, 27(2–3), 201–213. https://doi.org/10.1016/0168-1605(94)00167-5
  • Bonassi, S., Hagmar, L., Strömberg, U., Montagud, A.H., Tinnerberg, H., Forni, A., … Norppa, H. (2000). Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. European Study Group on Cytogenetic Biomarkers and Health. Cancer Research, 60(6), 1619–1625.
  • Bonassi, S., Ugolini, D., Kirsch-Volders, M., Strömberg, U., Vermeulen, R., & Tucker, J.D. (2005). Human population studies with cytogenetic biomarkers: Review of the literature and future prospectives. Environmental and Molecular Mutagenesis, 45(2–3), 258–270. https://doi.org/10.1002/em.20115
  • Bonassi, S., Znaor, A., Ceppi, M., Lando, C., Chang, W.P., Holland, N., … Fenech, M. (2007). An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis, 28(3), 625–631. https://doi.org/10.1093/carcin/bgl177
  • Bonassi, S., Znaor, A., Norppa, H., & Hagmar, L. (2004). Chromosomal aberrations and risk of cancer in humans: An epidemiologic perspective. Cytogenetic and Genome Research, 104(1–4), 376–382. https://doi.org/10.1159/000077519
  • Bony, S., Carcelen, M., Olivier, L., & Devaux, A. (2006). Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the Comet assay. Toxicology Letters, 166(1), 67–76. https://doi.org/10.1016/j.toxlet.2006.04.010
  • Bony, S., Olivier-Loiseau, L., Carcelen, M., & Devaux, A. (2007). Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line. Toxicology in vitro: An International Journal Published in Association with BIBRA, 21(3), 457–465. https://doi.org/10.1016/j.tiv.2006.10.014
  • Bosio, P., Siciliano, I., Gilardi, G., Gullino, M., & Garibaldi, A. (2017). Verrucarin A and roridin E produced on rocket by Myrothecium roridum under different temperatures and CO2 levels. World Mycotoxin Journal, 10(3), 229–236. https://doi.org/10.3920/WMJ2017.2198
  • Bouslimi, A., Bouaziz, C., Ayed-Boussema, I., Hassen, W., & Bacha, H. (2008). Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome aberrations in mice bone marrow cells. Toxicology, 251(1–3), 1–7. https://doi.org/10.1016/j.tox.2008.06.008
  • Brkanac, S.R., Gerić, M., Gajski, G., Vujčić, V., Garaj-Vrhovac, V., Kremer, D., & Domijan, A.M. (2015). Toxicity and antioxidant capacity of Frangula alnus Mill. Bark and its active component emodin. Regulatory Toxicology and Pharmacology: RTP, 73(3), 923–929. https://doi.org/10.1016/j.yrtph.2015.09.025
  • Browning, L.S. (1968). Lysergic acid diethylamine: Mutagenic effects in Drosophila. Science (New York, N.Y.), 161(3845), 1022–1023. https://doi.org/10.1126/science.161.3845.1022
  • Brugger, E.M., Wagner, J., Schumacher, D.M., Koch, K., Podlech, J., Metzler, M., & Lehmann, L. (2006). Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicology Letters, 164(3), 221–230. https://doi.org/10.1016/j.toxlet.2006.01.001
  • Carrano, A.V., & Natarajan, A.T. (1988). Considerations for population monitoring using cytogenetic techniques. Mutation Research, 204(3), 379–406. https://doi.org/10.1016/0165-1218(88)90036-5
  • Carrano, A.V., Thompson, L.H., Lindl, P.A., & Minkler, J.L. (1978). Sister chromatid exchange as an indicator of mutagenesis. Nature, 271(5645), 551–553. https://doi.org/10.1038/271551a0
  • Celik, M., Aksoy, H., & Yilmaz, S. (2010). Evaluation of beauvericin genotoxicity with the chromosomal aberrations, sister-chromatid exchanges and micronucleus assays. Ecotoxicology and Environmental Safety, 73(7), 1553–1557. https://doi.org/10.1016/j.ecoenv.2010.07.036
  • Celik, M., Yilmaz, S., Aksoy, H., Unal, F., Yüzbaşioğlu, D., & Dönbak, L. (2009). Evaluation of the genotoxicity of Fusarium mycotoxin moniliformin in human peripheral blood lymphocytes. Environmental and Molecular Mutagenesis, 50(5), 431–434. https://doi.org/10.1002/em.20459
  • Chagas, F.O., Dias, L.G., & Pupo, M.T. (2013). A mixed culture of endophytic fungi increases production of antifungal polyketides. Journal of Chemical Ecology, 39(10), 1335–1342. https://doi.org/10.1007/s10886-013-0351-7
  • Chang, H.T., Chou, C.T., Chen, I.S., Yu, C.C., Lu, T., Hsu, S.S., … Liang, W.Z. (2016). Mechanisms underlying effect of the mycotoxin cytochalasin B on induction of cytotoxicity, modulation of cell cycle, Ca2+ homeostasis and ROS production in human breast cells. Toxicology, 370, 1–19. https://doi.org/10.1016/j.tox.2016.09.006
  • Chen, C., Wang, J., Liu, J., Zhu, H., Sun, B., Wang, J., … Zhang, Y. (2015). Armochaetoglobins A-J: Cytochalasan Alkaloids from Chaetomium globosum TW1-1, a Fungus derived from the terrestrial arthropod Armadillidium vulgare. Journal of Natural Products, 78(6), 1193–1201. https://doi.org/10.1021/np500626x
  • Chen, Y.Y., Chiang, S.Y., Lin, J.G., Yang, J.S., Ma, Y.S., Liao, C.L., … Chung, J.G. (2010). Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells. Anticancer Research, 30(3), 945–951.
  • Cheng, T.J., Christiani, D.C., Xu, X., Wain, J.C., Wiencke, J.K., & Kelsey, K.T. (1996). Increased micronucleus frequency in lymphocytes from smokers with lung cancer. Mutation Research, 349(1), 43–50. https://doi.org/10.1016/0027-5107(95)00150-6
  • Cho, J.M., Davis, D.M.R., Wetter, D.A., Bartley, A.C., & Brewer, J.D. (2018). Association between atopic dermatitis and squamous cell carcinoma: A case-control study. International Journal of Dermatology, 57(3), 313–316. https://doi.org/10.1111/ijd.13857
  • Cilião, H.L., Ribeiro, D.L., Camargo-Godoy, R.B.O., Specian, A.F.L., Serpeloni, J.M., & Cólus, I.M.S. (2015). Cytotoxic and genotoxic effects of high concentrations of the immunosuppressive drugs cyclosporine and tacrolimus in MRC-5 cells. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 67(2), 179–187. https://doi.org/10.1016/j.etp.2014.11.008
  • Cohen, M.M., Marinello, M.J., & Back, N. (1967). Chromosomal damage in human leukocytes induced by lysergic acid diethylamide. Science (New York, N.Y.), 155(3768), 1417–1419. https://doi.org/10.1126/science.155.3768.1417
  • Cole, R.J., Taylor, N., Cole, J., & Arlett, C.F. (1981). Short-term tests for transplacentally active carcinogens: I. Micronucleus formation in fetal and maternal mouse erythroblasts. Mutation Research, 80(1), 141–157. https://doi.org/10.1016/0027-5107(81)90184-6
  • Corcuera, L.A., Vettorazzi, A., Arbillaga, L., Pérez, N., Gil, A. G., Azqueta, A., … López de Cerain, A. (2015). Genotoxicity of Aflatoxin B1 and Ochratoxin A after simultaneous application of the in vivo micronucleus and comet assay. Food and Chemical Toxicology, 76, 116–124. https://doi.org/10.1016/j.fct.2014.12.003
  • Costa, J.G., Saraiva, N., Guerreiro, P.S., Louro, H., Silva, M.J., Miranda, J.P., … Oliveira, N.G. (2016). Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: An integrative approach of complementary endpoints. Food and Chemical Toxicology, 87, 65–76. https://doi.org/10.1016/j.fct.2015.11.018
  • Crebelli, R., Carere, A., Conti, G., Conti, L., Rossi, C., & Tuttobello, L. (1988). Evaluation of the mutagenic activity of leucinostatins, a novel class of antibiotic peptides produced by Paecilomyces marquandii, in the modul Aspergillus nidulans. Microbiologica, 11(4), 299–305.
  • Creppy, E.E., Kane, A., Dirheimer, G., Lafarge-Frayssinet, C., Mousset, S., & Frayssinet, C. (1985). Genotoxicity of ochratoxin a in mice: DNA single-strand break evaluation in spleen, liver and kidney. Toxicology Letters, 28(1), 29–35. https://doi.org/10.1016/0378-4274(85)90006-2
  • Curry, P.T., Reed, R.N., Martino, R.M., & Kitchin, R.M. (1984). Induction of sister-chromatid exchanges in vivo in mice by the mycotoxins sterigmatocystin and griseofulvin. Mutation Research, 137(2–3), 111–115. https://doi.org/10.1016/0165-1218(84)90099-5
  • Davis, V.M., & Stack, M.E. (1991). Mutagenicity of stemphyltoxin III, a metabolite of Alternaria alternata. Applied and Environmental Microbiology, 57(1), 180–182.
  • de Melo, F.T., de Oliveira, I.M., Greggio, S., Dacosta, J.C., Guecheva, T.N., Saffi, J., … Rosa, R.M. (2012). DNA damage in organs of mice treated acutely with patulin, a known mycotoxin. Food and Chemical Toxicology, 50(10), 3548–3555. https://doi.org/10.1016/j.fct.2011.12.022
  • De Wolf, H., Blust, R., & Backeljau, T. (2004). The population genetic structure of Littorina littorea (Mollusca: Gastropoda) along a pollution gradient in the Scheldt estuary (The Netherlands) using RAPD analysis. The Science of the Total Environment, 325(1–3), 59–69. https://doi.org/10.1016/j.scitotenv.2003.11.004
  • Dean, R., Bynum, G., Kram, D., & Schneider, E.L. (1980). Sister-chromatid exchange induction by carcinogens in HTC cells: An in vitro system which does not require addition of activating factors. Mutation Research, 74(6), 477–483. https://doi.org/10.1016/0165-1161(80)90178-8
  • Degen, G.H., Lebrun, S., Lektarau, Y., & Föllmann, W. (2005). Modulation of ochratoxin A induced DNA-damage in urothelial cell cultures. Mycotoxin Research, 21(1), 57–60. https://doi.org/10.1007/BF02954819
  • Dellarco, V.L., Mavournin, K.H., & Tice, R.R. (1985). Aneuploidy and health risk assessment: Current status and future directions. Environmental Mutagenesis, 7(3), 405–424. https://doi.org/10.1002/em.2860070314
  • DeMarini, D.M., Brock, K.H., Doerr, C.L., & Moore, M.M. (1987). Mutagenicity of actinomycin D in mammalian cells due to clastogenic effects. Mutation Research, 192(2), 151–155. https://doi.org/10.1016/0165-7992(87)90113-8
  • Devnarain, N., Tiloke, C., Nagiah, S., & Chuturgoon, A.A. (2017). Fusaric acid induces oxidative stress and apoptosis in human cancerous oesophageal SNO cells. Toxicon, 126, 4–11. https://doi.org/10.1016/j.toxicon.2016.12.006
  • Domijan, A.M., Gajski, G., Novak Jovanović, I., Gerić, M., & Garaj-Vrhovac, V. (2015). In vitro genotoxicity of mycotoxins ochratoxin A and fumonisin B(1) could be prevented by sodium copper chlorophyllin—Implication to their genotoxic mechanism. Food Chemistry, 170, 455–462. https://doi.org/10.1016/j.foodchem.2014.08.036
  • Domijan, A.M., Zeljezić, D., Kopjar, N., & Peraica, M. (2006). Standard and Fpg-modified comet assay in kidney cells of ochratoxin A- and fumonisin B(1)-treated rats. Toxicology, 222(1–2), 53–59. https://doi.org/10.1016/j.tox.2006.01.024
  • Domijan, A.M., Zeljezić, D., Milić, M., & Peraica, M. (2007). Fumonisin B(1): Oxidative status and DNA damage in rats. Toxicology, 232(3), 163–169. https://doi.org/10.1016/j.tox.2007.01.007
  • Donmez-Altuntas, H., Gokalp-Yildiz, P., Bitgen, N., & Hamurcu, Z. (2013). Evaluation of genotoxicity, cytotoxicity and cytostasis in human lymphocytes exposed to patulin by using the cytokinesis-block micronucleus cytome (CBMN cyt) assay. Mycotoxin Research, 29(2), 63–70. https://doi.org/10.1007/s12550-012-0153-8
  • Dönmez-Altuntas, H., Dumlupinar, G., Imamoglu, N., Hamurcu, Z., & Liman, B.C. (2007). Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. Journal of Applied Toxicology: JAT, 27(4), 337–341. https://doi.org/10.1002/jat.1209
  • Dönmez-Altuntaş, H., Hamurcu, Z., Imamoglu, N., & Liman, B.C. (2003). Effects of ochratoxin A on micronucleus frequency in human lymphocytes. Die Nahrung, 47(1), 33–35. https://doi.org/10.1002/food.200390005
  • Dörrenhaus, A., Flieger, A., Golka, K., Schulze, H., Albrecht, M., Degen, G.H., & Föllmann, W. (2000). Induction of unscheduled DNA synthesis in primary human urothelial cells by the mycotoxin ochratoxin A. Toxicological Sciences: An Official Journal of the Society of Toxicology, 53(2), 271–277. https://doi.org/10.1093/toxsci/53.2.271
  • Duffaud, F., Orsière, T., Villani, P., Pelissier, A.L., Volot, F., Favre, R., & Botta, A. (1997). Comparison between micronucleated lymphocyte rates observed in healthy subjects and cancer patients. Mutagenesis, 12(4), 227–231. https://doi.org/10.1093/mutage/12.4.227
  • EFSA (2011). Opinion on genotoxicity testing strategies. Retrieved December 5, 2019, from European Food Safety Authority website: https://www.efsa.europa.eu/en/efsajournal/pub/2379
  • EFSA. (2017). Clarification of some aspects related to genotoxicity assessment. (2017, December 18). Retrieved December 5, 2019, from European Food Safety Authority website: https://www.efsa.europa.eu/en/efsajournal/pub/5113
  • Ehrlich, V., Darroudi, F., Uhl, M., Steinkellner, H., Gann, M., Majer, B.J., … Knasmüller, S. (2002a). Genotoxic effects of ochratoxin A in human-derived hepatoma (HepG2) cells. Food and Chemical Toxicology, 40(8), 1085–1090. https://doi.org/10.1016/S0278-6915(02)00045-5
  • Ehrlich, V., Darroudi, F., Uhl, M., Steinkellner, H., Zsivkovits, M., & Knasmueller, S. (2002b). Fumonisin B1 is genotoxic in human derived hepatoma (HepG2) cells. Mutagenesis, 17(3), 257–260. https://doi.org/10.1093/mutage/17.3.257
  • El. Khoury, D., Fayjaloun, S., Nassar, M., Sahakian, J., & Aad, P.Y. (2019). Updates on the effect of mycotoxins on male reproductive efficiency in mammals. Toxins, 11(9). https://doi.org/10.3390/toxins11090515
  • Escrivá, L., Font, G., & Manyes, L. (2015). In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology, 78, 185–206. https://doi.org/10.1016/j.fct.2015.02.005
  • Estop, A.M., Cieply, K., Vankirk, V., Munne, S., & Garver, K. (1991). Cytogenetic studies in human sperm. Human Genetics, 87(4), 447–451. https://doi.org/10.1007/BF00197166
  • Evans, H.J. (1984). Human Peripheral Blood Lymphocytes for the Analysis of Chromosome Aberrations in Mutagen Tests. In: Kilbey BJ, Legator M, Nichols W, Ramel C (eds) Handbook of Mutagenicity Test Procedures, 2nd ed. Elsevier Sci BV, pp. 405-427.
  • Evans, H.J., & O’Riordan, M.L. (1975). Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. Mutation Research, 31(3), 135–148. https://doi.org/10.1016/0165-1161(75)90082-5
  • Fabian, D., Rehák, P., Czikková, S., Il’ková, G., Baran, V., & Koppel, J. (2003). Induced cell death of preimplantation mouse embryos cultured in vitro evaluated by comet assay. Theriogenology, 60(4), 691–706. https://doi.org/10.1016/s0093-691x(03)00087-6
  • Fahmy, M.A., & Hassan, N.H. (1996). Cytogenetic effect of griseofulvin in mouse spermatocytes. Journal of Applied Toxicology: JAT, 16(2), 177–183. https://doi.org/10.1002/(SICI)1099-1263(199603)16:2<177::AID-JAT330>3.0.CO;2-T
  • Fenech, M., & Morley, A.A. (1985). Measurement of micronuclei in lymphocytes. Mutation Research, 147(1–2), 29–36. https://doi.org/10.1016/0165-1161(85)90015-9
  • Fenech, M., Holland, N., Chang, W.P., Zeiger, E., & Bonassi, S. (1999). The HUman MicroNucleus Project-An international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutation Research, 428(1–2), 271–283. https://doi.org/10.1016/s1383-5742(99)00053-8
  • Fenech, M.. (2002). Biomarkers of genetic damage for cancer epidemiology. Toxicology, 181–182, 411–416. https://doi.org/10.1016/s0300-483x(02)00480-8
  • Ferguson, L.R., Berriman, J., Pearson, A., Munday, R., Fowke, E.A., & Towers, N.R. (1992). In vitro and in vivo mutagenicity studies on sporidesmin, the toxin associated with facial eczema in ruminants. Mutation Research, 268(2), 199–210. https://doi.org/10.1016/0027-5107(92)90225-q
  • Fernández-Blanco, C., Font, G., & Ruiz, M.J. (2015). Oxidative DNA damage and disturbance of antioxidant capacity by alternariol in Caco-2 cells. Toxicology Letters, 235(2), 61–66. https://doi.org/10.1016/j.toxlet.2015.03.013
  • Ferrero, M., Castaño, A., Gonzalez, A., Sanz, F., & Becerril, C. (1998). Characterization of RTG-2 fish cell line by random amplified polymorphic DNA. Ecotoxicology and Environmental Safety, 40(1–2), 56–64. https://doi.org/10.1006/eesa.1998.1642
  • Fisher, C.R., Malling, H.V., De Serres, F.J., & Snyder, S. (1975). Mutagenicity of actinomycin D in Neurospora crassa. Mutation Research, 33(2–3), 187–192. https://doi.org/10.1016/0027-5107(75)90194-3
  • Flajs, D., & Peraica, M. (2009). Toxicological properties of citrinin. Arhiv Za Higijenu Rada I Toksikologiju, 60(4), 457–464. https://doi.org/10.2478/10004-1254-60-2009-1992
  • Fleck, S.C., Burkhardt, B., Pfeiffer, E., & Metzler, M. (2012). Alternaria toxins: Altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicology Letters, 214(1), 27–32. https://doi.org/10.1016/j.toxlet.2012.08.003
  • Fleck, S.C., Sauter, F., Pfeiffer, E., Metzler, M., Hartwig, A., & Köberle, B. (2016). DNA damage and repair kinetics of the Alternaria mycotoxins alternariol, altertoxin II and stemphyltoxin III in cultured cells. Mutation Research, 798–799, 27–34. https://doi.org/10.1016/j.mrgentox.2016.02.001
  • Flint, A., Forsey, R.R., & Usher, B. (1959). Griseofulvin, a new oral antibiotic for the treatment of fungous ınfections of the skin. Canadian Medical Association Journal, 81(3), 173–175.
  • Föllmann, W., & Lebrun, S. (2003). Uptake and genotoxic effects of ochratoxin A in cultured porcine urinary bladder epithelial cells. Mycotoxin Research, 19(1), 24–26. https://doi.org/10.1007/BF02940086
  • Föllmann, W., Behm, C., & Degen, G.H. (2007). Induction of micronuclei by ochratoxin A is a sensitive parameter of its genotoxicity in cultured cells. Mycotoxin Research, 23(2), 101. https://doi.org/10.1007/BF02946034
  • Föllmann, W., Hillebrand, I.E., Creppy, E.E., & Bolt, H.M. (1995). Sister chromatid exchange frequency in cultured isolated porcine urinary bladder epithelial cells (PUBEC) treated with ochratoxin A and alpha. Archives of Toxicology, 69(4), 280–286. https://doi.org/10.1007/s002040050171
  • Föllmann, Wolfram, Behm, C., & Degen, G.H. (2009). The emerging Fusarium toxin enniatin B: In vitro studies on its genotoxic potential and cytotoxicity in V79 cells in relation to other mycotoxins. Mycotoxin Research, 25(1), 11–19. https://doi.org/10.1007/s12550-008-0002-y
  • Frankic, T., Pajk, T., Rezar, V., Levart, A., & Salobir, J. (2006). The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes. Food and Chemical Toxicology, 44(11), 1838–1844. https://doi.org/10.1016/j.fct.2006.06.002
  • Frenzilli, G., Bosco, E., & Barale, R. (2000). Validation of single cell gel assay in human leukocytes with 18 reference compounds. Mutation Research, 468(2), 93–108. https://doi.org/10.1016/S1383-5718(00)00042-5
  • Fuska, J., Kuhr, I., Nemec, P., & Fusková, A. (1974). Antitumor antibiotics produced by Penicillium stipitatum Thom. The Journal of Antibiotics, 27(2), 123–127. https://doi.org/10.7164/antibiotics.27.123
  • Galvano, F., Campisi, A., Russo, A., Galvano, G., Palumbo, M., Renis, M., … Vanella, A. (2002a). DNA damage in astrocytes exposed to fumonisin B1. Neurochemical Research, 27(4), 345–351. https://doi.org/10.1023/a:1014971515377
  • Galvano, F., Russo, A., Cardile, V., Galvano, G., Vanella, A., & Renis, M. (2002b). DNA damage in human fibroblasts exposed to fumonisin B(1). Food and Chemical Toxicology, 40(1), 25–31. https://doi.org/10.1016/s0278-6915(01)00083-7
  • Gao, F., Jiang, L., Chen, M., Geng, C., Yang, G., Ji, F., … Liu, X. (2013). Genotoxic effects induced by zearalenone in a human embryonic kidney cell line. Mutation Research, 755(1), 6–10. https://doi.org/10.1016/j.mrgentox.2013.04.009
  • Gao, W., Jiang, L., Ge, L., Chen, M., Geng, C., Yang, G., … Liu, X. (2015). Sterigmatocystin-induced oxidative DNA damage in human liver-derived cell line through lysosomal damage. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 29(1), 1–7. https://doi.org/10.1016/j.tiv.2014.08.007
  • Geller, S., Xu, H., Lebwohl, M., Nardone, B., Lacouture, M.E., & Kheterpal, M. (2018). Malignancy Risk and Recurrence with Psoriasis and its Treatments: A Concise Update. American Journal of Clinical Dermatology, 19(3), 363–375. https://doi.org/10.1007/s40257-017-0337-2
  • Ghaderi, M., Allameh, A., Soleimani, M., Rastegar, H., & Ahmadi-Ashtiani, H.R. (2011). A comparison of DNA damage induced by aflatoxin B1 in hepatocyte-like cells, their progenitor mesenchymal stem cells and CD34(+) cells isolated from umbilical cord blood. Mutation Research, 719(1–2), 14–20. https://doi.org/10.1016/j.mrgentox.2010.09.005
  • Ghazi, T., Nagiah, S., Tiloke, C., Sheik Abdul, N., & Chuturgoon, A.A. (2017). Fusaric Acid Induces DNA Damage and Post-Translational Modifications of p53 in Human Hepatocellular Carcinoma (HepG2 ) Cells. Journal of Cellular Biochemistry, 118(11), 3866–3874. https://doi.org/10.1002/jcb.26037
  • Ghédira-Chékir, L., Maaroufi, K., Zakhama, A., Ellouz, F., Dhouib, S., Creppy, E.E., & Bacha, H. (1998). Induction of a SOS repair system in lysogenic bacteria by zearalenone and its prevention by vitamin E. Chemico-Biological Interactions, 113(1), 15–25. https://doi.org/10.1016/s0009-2797(98)00013-1
  • Glatt, H., Eich, E., Pertz, H., Becker, C., & Oesch, F. (1987). Mutagenicity experiments on agroclavines, new natural antineoplastic compounds. Cancer Research, 47(7), 1811–1814.
  • Glatt, H., Jung, R., & Oesch, F. (1983). Bacterial mutagenicity investigation of epoxides: Drugs, drug metabolites, steroids and pesticides. Mutation Research, 111(2), 99–118. https://doi.org/10.1016/0027-5107(83)90056-8
  • Glatt, H., Pertz, H., Kasper, R., & Eich, E. (1992). Clavine alkaloids and derivatives as mutagens detected in the Ames test. Anti-Cancer Drugs, 3(6), 609–614. https://doi.org/10.1097/00001813-199212000-00008
  • Goetz, P., Srám, R. J., & Zudová, Z. (1974). The mutagenic effect of lysergic acid diethylamide. I. Cytogenetic analysis. Mutation Research, 26(6), 513–516. https://doi.org/10.1016/s0027-5107(74)80052-7
  • Golli-Bennour, E.E., Kouidhi, B., Bouslimi, A., Abid-Essefi, S., Hassen, W., & Bacha, H. (2010). Cytotoxicity and genotoxicity induced by aflatoxin B1, ochratoxin A, and their combination in cultured Vero cells. Journal of Biochemical and Molecular Toxicology, 24(1), 42–50. https://doi.org/10.1002/jbt.20310
  • González-Arias, C.A., Benitez-Trinidad, A.B., Sordo, M., Robledo-Marenco, L., Medina-Díaz, I.M., Barrón-Vivanco, B.S., … Rojas-García, A.E. (2014). Low doses of ochratoxin A induce micronucleus formation and delay DNA repair in human lymphocytes. Food and Chemical Toxicology, 74, 249–254. https://doi.org/10.1016/j.fct.2014.10.006
  • González-Peñas, E., Vettorazzi, A., Lizarraga, E., Azqueta, A., & López de Cerain, A. (2019). Report of the IVth Workshop of the Spanish National Network on Mycotoxins and Toxigenic Fungi and Their Decontamination Processes (MICOFOOD), Held in Pamplona, Spain, 29–31 May 2019. Toxins, 11(7), 415. https://doi.org/10.3390/toxins11070415
  • Graf, U., Würgler, F.E., Katz, A.J., Frei, H., Juon, H., Hall, C.B., & Kale, P.G. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Environmental Mutagenesis, 6(2), 153–188. https://doi.org/10.1002/em.2860060206
  • Gupta, R.S., & Singh, B. (1982). Mutagenic responses of five independent genetic loci in CHO cells to a variety of mutagens. Development and characteristics of a mutagen screening system based on selection for multiple drug-resistant markers. Mutation Research, 94(2), 449–466. https://doi.org/10.1016/0027-5107(82)90307-4
  • Gürbüzel, M., Uysal, H., & Kızılet, H. (2015). Assessment of genotoxic potential of two mycotoxins in the wing spot test of Drosophila melanogaster. Toxicology and Industrial Health, 31(3), 261–267. https://doi.org/10.1177/0748233712472528
  • Hagmar, L., Brøgger, A., Hansteen, I.L., Heim, S., Högstedt, B., Knudsen, L., … Nordenson, I. (1994). Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic study group on the health risk of chromosome damage. Cancer Research, 54(11), 2919–2922.
  • Hansen, T.J. (1984). Ames mutagenicity tests on purified 3-nitropropionic acid. Food and Chemical Toxicology, 22(5), 399–401. https://doi.org/10.1016/0278-6915(84)90370-3
  • Hashimoto, K., Nakajima, Y., Matsumura, S., & Chatani, F. (2010). An in vitro micronucleus assay with size-classified micronucleus counting to discriminate aneugens from clastogens. Toxicology in vitro: An International Journal Published in Association with BIBRA, 24(1), 208–216. https://doi.org/10.1016/j.tiv.2009.09.006
  • Hassanane, M., Abdalla, E., El-Fiky, S., Amer, M., & Hamdy, A. (2000). Mutagenicity of the mycotoxin diacetoxyscirpenol on somatic and germ cells of mice. Mycotoxin Research, 16(1), 53–64. https://doi.org/10.1007/BF02946105
  • Hassen, W., Ayed-Boussema, I., Oscoz, A.A., Lopez, A.D.C., & Bacha, H. (2007). The role of oxidative stress in zearalenone-mediated toxicity in Hep G2 cells: Oxidative DNA damage, gluthatione depletion and stress proteins induction. Toxicology, 232(3), 294–302. https://doi.org/10.1016/j.tox.2007.01.015
  • Heddle, J.A., Cimino, M.C., Hayashi, M., Romagna, F., Shelby, M.D., Tucker, J.D., … MacGregor, J.T. (1991). Micronuclei as an index of cytogenetic damage: Past, present, and future. Environmental and Molecular Mutagenesis, 18(4), 277–291. https://doi.org/10.1002/em.2850180414
  • Helleday, T. (2003). Pathways for mitotic homologous recombination in mammalian cells. Mutation Research, 532(1–2), 103–115. https://doi.org/10.1016/j.mrfmmm.2003.08.013
  • Hennig, A., Fink-Gremmels, J., & Leistner, L. (1991). Mutagenicity and effects of ochratoxin A on the frequency of sister chromatid exchange after metabolic activation. IARC Scientific Publications, 115, 255–260.
  • Henninger, C., Huelsenbeck, J., Huelsenbeck, S., Grösch, S., Schad, A., Lackner, K.J., … Fritz, G. (2012). The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity. Toxicology and Applied Pharmacology, 261(1), 66–73. https://doi.org/10.1016/j.taap.2012.03.012
  • Higa, Y., Kawabe, M., Nabae, K., Toda, Y., Kitamoto, S., Hara, T., … Takahashi, M. (2007). Kojic acid -absence of tumor-initiating activity in rat liver, and of carcinogenic and photo-genotoxic potential in mouse skin. The Journal of Toxicological Sciences, 32(2), 143–159. https://doi.org/10.2131/jts.32.143
  • Horvatovich, K., Hafner, D., Bodnár, Z., Berta, G., Hancz, C., Dutton, M., & Kovács, M. (2013). Dose-related genotoxic effect of T-2 toxin measured by comet assay using peripheral blood mononuclear cells of healthy pigs. Acta Veterinaria Hungarica, 61(2), 175–186. https://doi.org/10.1556/AVet.2013.010
  • Hradil, C.M., Hallock, Y.F., Clardy, J., Kenfield, D.S., & Strobel, G. (1989). Phytotoxins from Alternaria cassiae. Phytochemistry, 28(1), 73–75. https://doi.org/10.1016/0031-9422(89)85011-3
  • Hsia, C.C., Wu, J.L., Lu, X.Q., & Li, Y.S. (1988). Natural occurrence and clastogenic effects of nivalenol, deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, and zearalenone in corn from a high-risk area of esophageal cancer. Cancer Detection and Prevention, 13(2), 79–86.
  • Hussein, H.S., & Brasel, J.M. (2001). Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167(2), 101–134. https://doi.org/10.1016/s0300-483x(01)00471-1
  • Inoue, H., Baba, H., Awano, K., & Yoshikawa, K. (1995). Genotoxic effect of griseofulvin in somatic cells of Drosophila melanogaster. Mutation Research, 343(4), 229–234. https://doi.org/10.1016/0165-1218(95)90018-7
  • Ivandić, E., & Bašić-Jukić, N. (2014). Liver damage caused by atorvastatin and cyclosporine in patients with renal transplant. Acta Medica Croatica: Casopis Hravatske Akademije Medicinskih Znanosti, 68(2), 175–178.
  • Jafari, M., Rezaei, M., Kalantari, H., & Hashemitabar, M. (2013). Determination of cell death induced by lovastatin on human colon cell line ht29 using the comet assay. Jundishapur Journal of Natural Pharmaceutical Products, 8(4), 187–191.
  • Jakšić, D., Puel, O., Canlet, C., Kopjar, N., Kosalec, I., & Klarić, M.Š. (2012). Cytotoxicity and genotoxicity of versicolorins and 5-methoxysterigmatocystin in A549 cells. Archives of Toxicology, 86(10), 1583–1591. https://doi.org/10.1007/s00204-012-0871-x
  • Jeswal, P. (1996). Citrinin-induced chromosomal abnormalities in the bone marrow cells of Mus musculus. Cytobios, 86(344), 29–33.
  • Kamp, H.G., Eisenbrand, G., Janzowski, C., Kiossev, J., Latendresse, J.R., Schlatter, J., & Turesky, R.J. (2005). Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats. Molecular Nutrition & Food Research, 49(12), 1160–1167. https://doi.org/10.1002/mnfr.200500124
  • Karuna, R., & Rao, B.S. (2013). Lack of micronuclei induction by fumonisin B1 mycotoxin in BALB/c mice. Mycotoxin Research, 29(1), 9–15. https://doi.org/10.1007/s12550-012-0149-4
  • Kawai, K., Mori, H., & Kitamura, J. (1983). The uncoupling effect of flavoglaucin, a quinol pigment from Aspergillus chevalieri (Mangin), on mitochondrial respiration. Toxicology Letters, 19(3), 321–325. https://doi.org/10.1016/0378-4274(83)90137-6
  • Kawai, K., Shiojiri, H., Nakamaru, T., Nozawa, Y., Sugie, S., Mori, H., … Ogihara, Y. (1985). Cytotoxicity and genotoxicity of xenoclauxin and desacetyl duclauxin from Penicillium duclauxii (delacroix). Cell Biology and Toxicology, 1(2), 1–10. https://doi.org/10.1007/BF00717786
  • Kaynarca, H. doruk, Hecer, C., & Ulusoy, B. (2019). Mycotoxin hazard in meat and meat products. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 14(1), 90–97. https://doi.org/10.17094/ataunivbd.449705
  • Kirsch-Volders, M., Elhajouji, A., Cundari, E., & Van Hummelen, P. (1997). The in vitro micronucleus test: A multi-endpoint assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss and non-disjunction. Mutation Research, 392(1–2), 19–30. https://doi.org/10.1016/s0165-1218(97)00042-6
  • Klarić, M.S., Darabos, D., Rozgaj, R., Kasuba, V., & Pepeljnjak, S. (2010). Beauvericin and ochratoxin A genotoxicity evaluated using the alkaline comet assay: Single and combined genotoxic action. Archives of Toxicology, 84(8), 641–650. https://doi.org/10.1007/s00204-010-0535-7
  • Klarić, M.S., Zelježić, D., Rumora, L., Peraica, M., Pepeljnjak, S., & Domijan, A.M. (2012). A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin A and citrinin. Archives of Toxicology, 86(1), 97–107. https://doi.org/10.1007/s00204-011-0735-9
  • Knasmüller, S., Bresgen, N., Kassie, F., Mersch-Sundermann, V., Gelderblom, W., Zöhrer, E., & Eckl, P.M. (1997). Genotoxic effects of three Fusarium mycotoxins, fumonisin B1, moniliformin and vomitoxin in bacteria and in primary cultures of rat hepatocytes. Mutation Research, 391(1–2), 39–48. https://doi.org/10.1016/s0165-1218(97)00030-x
  • Kocan, R.M., Landolt, M.L., & Sabo, K.M. (1982). Anaphase aberrations: A measure of genotoxicity in mutagen-treated fish cells. Environmental Mutagenesis, 4(2), 181–189. https://doi.org/10.1002/em.2860040208
  • Kokkonen, M., Ojala, L., Parikka, P., & Jestoi, M. (2010). Mycotoxin production of selected Fusarium species at different culture conditions. International Journal of Food Microbiology, 143(1–2), 17–25. https://doi.org/10.1016/j.ijfoodmicro.2010.07.015
  • Koppen, G., & Verschaeve, L. (1996). The alkaline comet test on plant cells: A new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mutation Research, 360(3), 193–200. https://doi.org/10.1016/s0165-1161(96)90017-5
  • Krishna, G., Kropko, M.L., & Theiss, J.C. (1989). Use of the cytokinesis-block method for the analysis of micronuclei in V79 Chinese hamster lung cells: Results with mitomycin C and cyclophosphamide. Mutation Research, 222(1), 63–69. https://doi.org/10.1016/0165-1218(89)90036-0
  • Krivobok, S., Olivier, P., Marzin, D.R., Seigle-Murandi, F., & Steiman, R. (1987). Study of the genotoxic potential of 17 mycotoxins with the SOS Chromotest. Mutagenesis, 2(6), 433–439. https://doi.org/10.1093/mutage/2.6.433
  • Krivobok, S., Seigle-Murandi, F., Steiman, R., Marzin, D.R., & Betina, V. (1992). Mutagenicity of substituted anthraquinones in the Ames/Salmonella microsome system. Mutation Research, 279(1), 1–8. https://doi.org/10.1016/0165-1218(92)90259-3
  • Kuhr, I., Fuska, J., Sedmera, P., Podojil, M., Vokoun, J., & Vanĕk, Z. (1973). An antitumor antibiotic produced by Penicillium stipitatum Thom; its identity with duclauxin. The Journal of Antibiotics, 26(9), 535–536. https://doi.org/10.7164/antibiotics.26.535
  • Kuroda, K., Hibi, D., Ishii, Y., Takasu, S., Kijima, A., Matsushita, K., … Umemura, T. (2014). Ochratoxin A induces DNA double-strand breaks and large deletion mutations in the carcinogenic target site of gpt delta rats. Mutagenesis, 29(1), 27–36. https://doi.org/10.1093/mutage/get054
  • Kuroda, K., Ishii, Y., Takasu, S., Kijima, A., Matsushita, K., Watanabe, M., … Umemura, T. (2013). Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis. Toxicology, 311(3), 216–224. https://doi.org/10.1016/j.tox.2013.07.003
  • Le Hegarat, L., Dumont, J., Josse, R., Huet, S., Lanceleur, R., Mourot, A., … Fessard, V. (2010). Assessment of the genotoxic potential of indirect chemical mutagens in HepaRG cells by the comet and the cytokinesis-block micronucleus assays. Mutagenesis, 25(6), 555–560. https://doi.org/10.1093/mutage/geq039
  • Lebrun, S., & Föllmann, W. (2002). Detection of ochratoxin A-induced DNA damage in MDCK cells by alkaline single cell gel electrophoresis (comet assay). Archives of Toxicology, 75(11), 734–741. https://doi.org/10.1007/s00204-001-0291-9
  • Lebrun, S., Golka, K., Schulze, H., & Föllmann, W. (2006). Glutathione S-transferase polymorphisms and ochratoxin A toxicity in primary human urothelial cells. Toxicology, 224(1–2), 81–90. https://doi.org/10.1016/j.tox.2006.04.034
  • Lee, H.Z., Lin, C.J., Yang, W.H., Leung, W.C., & Chang, S.P. (2006). Aloe-emodin induced DNA damage through generation of reactive oxygen species in human lung carcinoma cells. Cancer Letters, 239(1), 55–63. https://doi.org/10.1016/j.canlet.2005.07.036
  • Lerda, D., Biaggi Bistoni, M., Peralta, N., Ychari, S., Vazquez, M., & Bosio, G. (2005). Fumonisins in foods from Cordoba (Argentina), presence and genotoxicity. Food and Chemical Toxicology, 43(5), 691–698. https://doi.org/10.1016/j.fct.2004.12.019
  • Lerda, D., Biagi Bistoni, M., Pelliccioni, P., & Litterio, N. (2010). Allium cepa as a biomonitor of ochratoxin A toxicity and genotoxicity. Plant Biology (Stuttgart, Germany), 12(4), 685–688. https://doi.org/10.1111/j.1438-8677.2010.00337.x
  • Li, J.H., & Lin, L.F. (1998). Genetic toxicology of abused drugs: A brief review. Mutagenesis, 13(6), 557–565. https://doi.org/10.1093/mutage/13.6.557
  • Li, M.X. (1988). Mutagenicity and carcinogenicity of T-2 toxin, a trichothecene produced by Fusarium fungi. Zhonghua Zhong Liu Za Zhi [Chinese Journal of Oncology], 10(5), 326–329.
  • Li, W.Y., Chan, R.Y.K., Yu, P.H.F., & Chan, S.W. (2013). Emodin induces cytotoxic effect in human breast carcinoma MCF-7 cell through modulating the expression of apoptosis-related genes. Pharmaceutical Biology, 51(9), 1175–1181. https://doi.org/10.3109/13880209.2013.782322
  • Li, Y., Luan, Y., Qi, X., Li, M., Gong, L., Xue, X., … Ren, J. (2010). Emodin triggers DNA double-strand breaks by stabilizing topoisomerase II-DNA cleavage complexes and by inhibiting ATP hydrolysis of topoisomerase II. Toxicological Sciences: An Official Journal of the Society of Toxicology, 118(2), 435–443. https://doi.org/10.1093/toxsci/kfq282
  • Liberman, D.F., Schaefer, F.L., Fink, R.C., Ramgopal, M., Ghosh, A.C., & Mulcahy, R. (1980). Mutagenicity of islandicin and chrysophanol in the Salmonella/microsome system. Applied and Environmental Microbiology, 40(3), 476–479.
  • Limón, M.C., Rodríguez-Ortiz, R., & Avalos, J. (2010). Bikaverin production and applications. Applied Microbiology and Biotechnology, 87(1), 21–29. https://doi.org/10.1007/s00253-010-2551-1
  • Lin, L., Zhang, J., Wang, P., Wang, Y., & Chen, J. (1998). Thin-layer chromatography of mycotoxins and comparison with other chromatographic methods. Journal of Chromatography A, 815(1), 3–20. https://doi.org/10.1016/S0021-9673(98)00204-0
  • Lindholm, C., Norppa, H., Hayashi, M., & Sorsa, M. (1991). Induction of micronuclei and anaphase aberrations by cytochalasin B in human lymphocyte cultures. Mutation Research, 260(4), 369–375. https://doi.org/10.1016/0165-1218(91)90022-e
  • Lioi, M.B., Santoro, A., Barbieri, R., Salzano, S., & Ursini, M.V. (2004). Ochratoxin A and zearalenone: A comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Mutation Research, 557(1), 19–27. https://doi.org/10.1016/j.mrgentox.2003.09.009
  • Liu, B.H., Yu, F.Y., Wu, T.S., Li, S.Y., Su, M.C., Wang, M.C., & Shih, S.M. (2003). Evaluation of genotoxic risk and oxidative DNA damage in mammalian cells exposed to mycotoxins, patulin and citrinin. Toxicology and Applied Pharmacology, 191(3), 255–263. https://doi.org/10.1016/s0041-008x(03)00254-0
  • Liu, J., Wang, Y., Cui, J., Xing, L., Shen, H., Wu, S., … Zhang, X. (2012). Ochratoxin A induces oxidative DNA damage and G1 phase arrest in human peripheral blood mononuclear cells in vitro. Toxicology Letters, 211(2), 164–171. https://doi.org/10.1016/j.toxlet.2012.03.800
  • Liu, W., Xi, J., Cao, Y., You, X., Chen, R., Zhang, X., … Luan, Y. (2019). An adaption of human-ınduced hepatocytes to in vitro genetic toxicity Tests. Mutagenesis, 34(2), 165–171. https://doi.org/10.1093/mutage/gey041
  • Loi, M., Fanelli, F., Liuzzi, V.C., Logrieco, A.F., & Mulè, G. (2017). Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins, 9(4). https://doi.org/10.3390/toxins9040111
  • Lu, H.F., Lai, T.Y., Hsia, T.C., Tang, Y.J., Yang, J.S., Chiang, J.H., … Chung, J.G. (2010). Danthron induces DNA damage and inhibits DNA repair gene expressions in GBM 8401 human brain glioblastoma multiforms cells. Neurochemical Research, 35(7), 1105–1110. https://doi.org/10.1007/s11064-010-0161-z
  • Lusky, K., Wagner, U., Stähr, B., Doberschütz, K.D., & Peter, W. (1991). Investigations on possible genotoxic effects ofFusarium toxins in boars. Mycotoxin Research, 7(1), 29–34. https://doi.org/10.1007/BF03192161
  • Madle, E., Korte, A., & Beek, B. (1986). Species differences in mutagenicity testing: I. Micronucleus and SCE tests in rats, mice, and Chinese hamsters with aflatoxin B1. Teratogenesis, Carcinogenesis, and Mutagenesis, 6(1), 1–13. https://doi.org/10.1002/tcm.1770060102
  • Mailhes, J.B., Marchetti, F., & Aardema, M.J. (1993). Griseofulvin-induced aneuploidy and meiotic delay in mouse oocytes: Effect of dose and harvest time. Mutation Research, 300(3–4), 155–163. https://doi.org/10.1016/0165-1218(93)90047-h
  • Malaveille, C., Brun, G., & Bartsch, H. (1991). Genotoxicity of ochratoxin A and structurally related compounds in Escherichia coli strains: Studies on their mode of action. IARC Scientific Publications, 115, 261–266.
  • Malaveille, C., Brun, G., & Bartsch, H. (1994). Structure-activity studies in E. coli strains on ochratoxin A (OTA) and its analogues implicate a genotoxic free radical and a cytotoxic thiol derivative as reactive metabolites. Mutation Research, 307(1), 141–147. https://doi.org/10.1016/0027-5107(94)90286-0
  • Mally, A., Pepe, G., Ravoori, S., Fiore, M., Gupta, R.C., Dekant, W., & Mosesso, P. (2005). Ochratoxin a causes DNA damage and cytogenetic effects but no DNA adducts in rats. Chemical Research in Toxicology, 18(8), 1253–1261. https://doi.org/10.1021/tx049650x
  • Mamur, S., Ünal, F., Yılmaz, S., Erikel, E., & Yüzbaşıoğlu, D. (2018a). Evaluation of the cytotoxic and genotoxic effects of mycotoxin fusaric acid. Drug and Chemical Toxicology, 11, 1–9. https://doi.org/10.1080/01480545.2018.1499772
  • Mamur, S., Yuzbasioglu, D., Yılmaz, S., Erikel, E., & Unal, F. (2018b). Assessment of cytotoxic and genotoxic effects of enniatin-A in vitro. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 35(8), 1633–1644. https://doi.org/10.1080/19440049.2018.1486513
  • Marchetti, F., Aardema, M., Beevers, C., van Benthem, J., Douglas, G.R., Godschalk, R., … Williams, A. (2018). Simulation of mouse and rat spermatogenesis to inform genotoxicity testing using OECD test guideline 488. Mutation Research, 832–833, 19–28. https://doi.org/10.1016/j.mrgentox.2018.05.020
  • Marillia, E.F., & Scoles, G.J. (1996). The use of RAPD markers in Hordeum phylogeny. Genome, 39(4), 646–654. https://doi.org/10.1139/g96-082
  • Maron, D.M., & Ames, B.N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113(3–4), 173–215. https://doi.org/10.1016/0165-1161(83)90010-9
  • Matter, B.E., Donatsch, P., Racine, R.R., Schmid, B., & Suter, W. (1982). Genotoxicity evaluation of cyclosporin A, a new immunosuppressive agent. Mutation Research, 105(4), 257–264. https://doi.org/10.1016/0165-7992(82)90039-2
  • Matthiaschk, G., & Korte, A. (1986). Studies on the embryotoxicity and mutagenicity of mycotoxins. Mycotoxin Research, 2(2), 89–97. https://doi.org/10.1007/BF03191969
  • McGregor, D.B., Brown, A., Cattanach, P., Edwards, I., McBride, D., Riach, C., & Caspary, W.J. (1988). Responses of the L5178Y tk+/tk- mouse lymphoma cell forward mutation assay: III. 72 coded chemicals. Environmental and Molecular Mutagenesis, 12(1), 85–154. https://doi.org/10.1002/em.2860120111
  • Mengs, U., Schuler, D., & Marshall, R.R. (2001). No induction of chromosomal aberrations in Chinese hamster ovary cells by chrysophanol. Mutation Research, 492(1–2), 69–72. https://doi.org/10.1016/s1383-5718(01)00150-4
  • Migliore, L., & Nieri, M. (1991). Evaluation of twelve potential aneuploidogenic chemicals by the in vitro human lymphocyte micronucleus assay. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 5(4), 325–336. https://doi.org/10.1016/0887-2333(91)90009-3
  • Mikami, Y., Fukushima, K., Arai, T., Abe, F., Shibuya, H., & Ommura, Y. (1984). Leucinostatins, peptide mycotoxins produced by Paecilomyces lilacinus and their possible roles in fungal infection. Zentralblatt Fur Bakteriologie, Mikrobiologie, Und Hygiene. Series A, Medical Microbiology, Infectious Diseases, Virology, Parasitology, 257(2), 275–283.
  • Miranda, D.D.C., Arçari, D.P., Ladeira, M.S.P., Calori-Domingues, M.A., Romero, A. C., Salvadori, D. M. F., … Ribeiro, M. L. (2007). Analysis of DNA damage induced by aflatoxin B1 in Dunkin-Hartley guinea pigs. Mycopathologia, 163(5), 275–280. https://doi.org/10.1007/s11046-007-9014-y
  • Mirsalis, J.C., Tyson, C.K., & Butterworth, B.E. (1982). Detection of genotoxic carcinogens in the in vivo-in vitro hepatocyte DNA repair assay. Environmental Mutagenesis, 4(5), 553–562. https://doi.org/10.1002/em.2860040506
  • Miyamae, Y., Iwasaki, K., Kinae, N., Tsuda, S., Murakami, M., Tanaka, M., & Sasaki, Y.F. (1997). Detection of DNA lesions induced by chemical mutagens using the single-cell gel electrophoresis (comet) assay. 2. Relationship between DNA migration and alkaline condition. Mutation Research, 393(1–2), 107–113. https://doi.org/10.1016/s1383-5718(97)00091-0
  • Mok, Z.R., & Tey, H.L. (2018). Acquired idiopathic generalized anhidriosis: Successful treatment with cyclosporine in two cases. Dermatologic Therapy, 31(2), e12579. https://doi.org/10.1111/dth.12579
  • Mori, H., Kawai, K., Ohbayashi, F., Kitamura, J., & Nozawa, Y. (1983). Genotoxicity of quinone pigments from pathogenic fungi. Mutation Research, 122(1), 29–34. https://doi.org/10.1016/0165-7992(83)90138-0
  • Mori, H., Kawai, K., Ohbayashi, F., Kuniyasu, T., Yamazaki, M., Hamasaki, T., & Williams, G.M. (1984). Genotoxicity of a variety of mycotoxins in the hepatocyte primary culture/DNA repair test using rat and mouse hepatocytes. Cancer Research, 44(7), 2918–2923.
  • Mori, H., Sugie, S., Yoshimi, N., Kitamura, J., Niwa, M., Hamasaki, T., & Kawai, K. (1986). Genotoxic effects of a variety of sterigmatocystin-related compounds in the hepatocyte/DNA-repair test and the Salmonella microsome assay. Mutation Research, 173(3), 217–222. https://doi.org/10.1016/0165-7992(86)90039-4
  • Mori, H., Yoshimi, N., Iwata, H., Tanaka, T., Kawai, K., & Sankawa, U. (1988). Additional survey on genotoxicity of natural anthraquinones in the hepatocyte primary culture/DNA repair assay. The Journal of Toxicological Sciences, 13(3), 161–166. https://doi.org/10.2131/jts.13.161
  • Mori, Hideki, Kitamura, J., Sugie, S., Kawai, K., & Hamasaki, T. (1985). Genotoxicity of fungal metabolites related to aflatoxin B1 biosynthesis. Mutation Research Letters, 143(3), 121–125. https://doi.org/10.1016/S0165-7992(85)80021-X
  • Moulé, Y., Hermann, M., & Renault, G. (1981). Negative response of PR toxin in the Salmonella typhimurium/microsome test and sister-chromatid exchange assay. Mutation Research, 89(3), 203–207. https://doi.org/10.1016/0165-1218(81)90238-x
  • Muehlbauer, P.A., & Schuler, M.J. (2005). Detection of numerical chromosomal aberrations by flow cytometry: A novel process for identifying aneugenic agents. Mutation Research, 585(1), 156–169. https://doi.org/10.1016/j.mrgentox.2005.05.002
  • Mueller, S.O., Schmitt, M., Dekant, W., Stopper, H., Schlatter, J., Schreier, P., & Lutz, W.K. (1999). Occurrence of emodin, chrysophanol and physcion in vegetables, herbs and liquors. Genotoxicity and anti-genotoxicity of the anthraquinones and of the whole plants. Food and Chemical Toxicology, 37(5), 481–491. https://doi.org/10.1016/s0278-6915(99)00027-7
  • Munday, R., Pearson, A., & Ferguson, L.R. (1993). Mouse micronucleus assays of sporidesmin, the toxin associated with facial eczema in ruminants. Mutation Research, 302(1), 71–74. https://doi.org/10.1016/0165-7992(93)90092-a
  • Muneer, R.S. (1978). Effects of LSD on human chromosomes. Mutation Research, 51(3), 403–410. https://doi.org/10.1016/0027-5107(78)90128-8
  • Muthulakshmi, S., Maharajan, K., Habibi, H.R., Kadirvelu, K., & Venkataramana, M. (2018). Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio): Role of oxidative stress revealed by a multi biomarker study. Chemosphere, 198, 111–121. https://doi.org/10.1016/j.chemosphere.2018.01.141
  • Müller, S.O., Eckert, I., Lutz, W.K., & Stopper, H. (1996). Genotoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: Topoisomerase II mediated? Mutation Research, 371(3–4), 165–173. https://doi.org/10.1016/s0165-1218(96)90105-6
  • Müller, T. (1987). Carcinogenic and genotoxic effects of mycotoxins. Die Nahrung, 31(2), 117–125. https://doi.org/10.1002/food.19870310205
  • Nesslany, F., Simar-Meintières, S., Ficheux, H., & Marzin, D. (2009). Aloe-emodin-induced DNA fragmentation in the mouse in vivo comet assay. Mutation Research, 678(1), 13–19. https://doi.org/10.1016/j.mrgentox.2009.06.004
  • Nestmann, E.R., Nasim, A., Haynes, R.H., & Kowbel, D.J. (1981). Genetic activity of actinomycin D in Saccharomyces cerevisiae but not in Escherichia coli. Mutation Research, 89(3), 229–236.
  • Ni, C.H., Yu, C.S., Lu, H.F., Yang, J.S., Huang, H.Y., Chen, P.Y., … Chung, J.G. (2014). Chrysophanol-induced cell death (necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential. Environmental Toxicology, 29(7), 740–749. https://doi.org/10.1002/tox.21801
  • Nielsen, J., Friedrich, U., Jacobsen, E., & Tsuboi, T. (1968). Lysergide and chromosome abnormalities. British Medical Journal, 2(5608), 801–803.
  • Nieminen, S.M., Mäki-Paakkanen, J., Hirvonen, M.R., Roponen, M., & von Wright, A. (2002). Genotoxicity of gliotoxin, a secondary metabolite of Aspergillus fumigatus, in a battery of short-term test systems. Mutation Research, 520(1–2), 161–170. https://doi.org/10.1016/s1383-5718(02)00202-4
  • Nito, S., Ariyuki, F., & Okaniwa, A. (1988). Spontaneous expulsion of micronuclei by enucleation in the micronucleus assay. Mutation Research, 207(3–4), 185–192. https://doi.org/10.1016/0165-7992(88)90085-1
  • Noel, S., & Rath, S.K. (2006). Randomly amplified polymorphic DNA as a tool for genotoxicity: An assessment. Toxicology and Industrial Health, 22(6), 267–275. https://doi.org/10.1191/0748233706th267oa
  • Nohynek, G.J., Kirkland, D., Marzin, D., Toutain, H., Leclerc-Ribaud, C., & Jinnai, H. (2004). An assessment of the genotoxicity and human health risk of topical use of kojic acid [5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one]. Food and Chemical Toxicology, 42(1), 93–105. https://doi.org/10.1016/j.fct.2003.08.008
  • Norberto, A.H., Saúl, F.M., Belén, B., García-Bores Ana, M., Ernesto, M., Guillermo, Á.A., & Elizabeth, H.E. (2017). Raw data of the effects of Chlorogenic acid in 3-Nitropropionic acid induced toxicity and genotoxicity. Data in Brief, 14, 123–131. https://doi.org/10.1016/j.dib.2017.07.004
  • Norppa, H., & Falck, G.C.M. (2003). What do human micronuclei contain? Mutagenesis, 18(3), 221–233. https://doi.org/10.1093/mutage/18.3.221
  • Norppa, H., Bonassi, S., Hansteen, I.L., Hagmar, L., Strömberg, U., Rössner, P., … Fucic, A. (2006). Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutation Research, 600(1–2), 37–45. https://doi.org/10.1016/j.mrfmmm.2006.05.030
  • Norred, W.P., Plattner, R.D., Vesonder, R.F., Bacon, C.W., & Voss, K.A. (1992). Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food and Chemical Toxicology, 30(3), 233–237. https://doi.org/10.1016/0278-6915(92)90038-m
  • Nusuetrong, P., Saito, M., Kikuchi, H., Oshima, Y., Moriya, T., & Nakahata, N. (2012). Apoptotic effects of satratoxin H is mediated through DNA double-stranded break in PC12 cells. The Journal of Toxicological Sciences, 37(4), 803–812. https://doi.org/10.2131/jts.37.803
  • Obrecht-Pflumio, S., Chassat, T., Dirheimer, G., & Marzin, D. (1999). Genotoxicity of ochratoxin A by Salmonella mutagenicity test after bioactivation by mouse kidney microsomes. Mutation Research, 446(1), 95–102. https://doi.org/10.1016/s1383-5718(99)00152-7
  • OECD. (1986). Guideline for Testing of Chemicals "Genetic Toxicology: In vitro Sister Chromatid Exchange Assay in Mammalian Cells” Test No: 479.
  • OECD. (1997a). Guideline for Testing of Chemicals “In vitro Mammalian Chromosome Aberration Test” Test No: 473.
  • OECD. (1997b). Guideline for Testing of Chemicals “Mammalian Bone Marrow Chromosome Aberration Test” Test No: 475.
  • OECD. (2013). Mammalian erythrocyte micronucleus test. In: Guideline for the testing of chemicals. https://www.oecd-ilibrary.org/environment/test-no-474-mammalian-erythrocyte-micronucleus-test_9789264264762-en Accessed: 11 May 2018.
  • Ogiwara, Y., Sugiura, M., Watanabe, K., Tawara, J., Endo, E., Maruyama, H., … Kawasako, K. (2015). Evaluation of the repeated-dose liver, bone marrow and peripheral blood micronucleus and comet assays using kojic acid. Mutation Research, 780–781, 111–116. https://doi.org/10.1016/j.mrgentox.2015.01.004
  • Olive, P.L., & Banáth, J.P. (1997). Multicell Spheroid Response to Drugs Predicted with the Comet Assay. Cancer Research, 57(24), 5528–5533.
  • Oliveira, N.G., Castro, M., Rodrigues, A.S., Gil, O.M., Toscano-Rico, J.M., & Rueff, J. (2002). DNA-PK inhibitor wortmannin enhances DNA damage induced by bleomycin in V79 Chinese hamster cells. Teratogenesis, Carcinogenesis, and Mutagenesis, 22(5), 343–351. https://doi.org/10.1002/tcm.10029
  • Oliver, J., Meunier, J.R., Awogi, T., Elhajouji, A., Ouldelhkim, M.C., Bichet, N., … Lorge, E. (2006). SFTG international collaborative study on in vitro micronucleus test V. Using L5178Y cells. Mutation Research, 607(1), 125–152. https://doi.org/10.1016/j.mrgentox.2006.04.004
  • Oshiro, Y., Piper, C.E., Balwierz, P.S., & Soelter, S.G. (1991). Chinese hamster ovary cell assays for mutation and chromosome damage: Data from non-carcinogens. Journal of Applied Toxicology: JAT, 11(3), 167–177. https://doi.org/10.1002/jat.2550110304
  • Ostry, V. (2008). Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin Journal, 1(2), 175–188. https://doi.org/10.3920/WMJ2008.x013
  • Ouanes, Z., Abid, S., Ayed, I., Anane, R., Mobio, T., Creppy, E.E., & Bacha, H. (2003). Induction of micronuclei by Zearalenone in Vero monkey kidney cells and in bone marrow cells of mice: Protective effect of Vitamin E. Mutation Research, 538(1–2), 63–70. https://doi.org/10.1016/s1383-5718(03)00093-7
  • Parkes, D.J., & Scott, D. (1982). A quantitative comparison of cytogenetic effects of anti-tumor agents. Cytogenetics and Cell Genetics, 33(1–2), 27–34. https://doi.org/10.1159/000131722
  • Perry, P., & Evans, H.J. (1975). Cytological detection of mutagen–carcinogen exposure by sister chromatid exchange. Nature, 258(5531), 121–125. https://doi.org/10.1038/258121a0
  • Pfohl-Leszkowicz, A., Chekir-Ghedira, L., & Bacha, H. (1995). Genotoxicity of zearalenone, an estrogenic mycotoxin: DNA adduct formation in female mouse tissues. Carcinogenesis, 16(10), 2315–2320. https://doi.org/10.1093/carcin/16.10.2315
  • Phillips, D.H., & Arlt, V.M. (2009). Genotoxicity: damage to DNA and its consequences. In: Luch A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, Birkhäuser, Basel, Switzerland, vol. 99, pp. 87–110. https://doi.org/10.1007/978-3-7643-8336-7_4
  • Prata-Sena, M., Ramos, A.A., Buttachon, S., Castro-Carvalho, B., Marques, P., Dethoup, T., … Rocha, E. (2016). Cytotoxic activity of secondary metabolites from marine-derived Fungus Neosartorya siamensis in human cancer cells. Phytotherapy Research: PTR, 30(11), 1862–1871. https://doi.org/10.1002/ptr.5696
  • Pylkkänen, L., Jahnukainen, K., Parvinen, M., & Santti, R. (1991). Testicular toxicity and mutagenicity of steroidal and non-steroidal estrogens in the male mouse. Mutation Research, 261(3), 181–191. https://doi.org/10.1016/0165-1218(91)90066-u
  • Quillardet, P., Huisman, O., D’Ari, R., & Hofnung, M. (1982). SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 79(19), 5971–5975. https://doi.org/10.1073/pnas.79.19.5971
  • Ramesha, A., Venkataramana, M., Nirmaladevi, D., Gupta, V.K., Chandranayaka, S., & Srinivas, C. (2015). Cytotoxic effects of oosporein isolated from endophytic fungus Cochliobolus kusanoi. Frontiers in Microbiology, 6, 870. https://doi.org/10.3389/fmicb.2015.00870
  • Reddy, C.S., Reddy, R.V., Chan, P.K., & Hayes, A.W. (1980). Mutagenicity of secalonic acid D in mice. Journal of Environmental Pathology and Toxicology, 4(5–6), 31–37.
  • Rencuzogullari, E., & Aydin, M. (2018). Methodology of Genotoxic and Teratogenic Studies in Rats. Methods in Molecular Biology (Clifton, N.J.), 1797, 555–575. https://doi.org/10.1007/978-1-4939-7883-0_33
  • Rezar, V., Frankič, T., Narat, M., Levart, A., & Salobir, J. (2007). Dose-Dependent Effects of T-2 Toxin on Performance, Lipid Peroxidation, and Genotoxicity in Broiler Chickens. Poultry Science, 86(6), 1155–1160. https://doi.org/10.1093/ps/86.6.1155
  • Robbiano, L., Baroni, D., Carrozzino, R., Mereto, E., & Brambilla, G. (2004). DNA damage and micronuclei induced in rat and human kidney cells by six chemicals carcinogenic to the rat kidney. Toxicology, 204(2), 187–195. https://doi.org/10.1016/j.tox.2004.06.057
  • Rogers, C.G., & Héroux-Metcalf, C. (1983). Cytotoxicity and absence of mutagenic activity of vomitoxin (4-deoxynivalenol) in a hepatocyte-mediated mutation assay with V79 Chinese hamster lung cells. Cancer Letters, 20(1), 29–35. https://doi.org/10.1016/0304-3835(83)90183-0
  • Rosefort, C., Fauth, E., & Zankl, H. (2004). Micronuclei induced by aneugens and clastogens in mononucleate and binucleate cells using the cytokinesis block assay. Mutagenesis, 19(4), 277–284. https://doi.org/10.1093/mutage/geh028
  • Russo, A., La Fauci, L., Acquaviva, R., Campisi, A., Raciti, G., Scifo, C., … Galvano, F. (2005). Ochratoxin A-induced DNA damage in human fibroblast: Protective effect of cyanidin 3-O-beta-d-glucoside. The Journal of Nutritional Biochemistry, 16(1), 31–37. https://doi.org/10.1016/j.jnutbio.2004.05.005
  • Sabater-Vilar, M., Nijmeijer, S., & Fink-Gremmels, J. (2003). Genotoxicity assessment of five tremorgenic mycotoxins (fumitremorgen B, paxilline, penitrem A, verruculogen, and verrucosidin) produced by molds isolated from fermented meats. Journal of Food Protection, 66(11), 2123–2129. https://doi.org/10.4315/0362-028x-66.11.2123
  • Sakai, M., Abe, K., Okumura, H., Kawamura, O., Sugiura, Y., Horie, Y., & Ueno, Y. (1992). Genotoxicity of fungi evaluated by SOS microplate assay. Natural Toxins, 1(1), 27–34. https://doi.org/10.1002/nt.2620010107
  • Salamone, M., Heddle, J., Stuart, E., & Katz, M. (1980). Towards an improved micronucleus test: Studies on 3 model agents, mitomycin C, cyclophosphamide and dimethylbenzanthracene. Mutation Research, 74(5), 347–356. https://doi.org/10.1016/0165-1161(80)90193-4
  • Sandhu, S.S., & Acedo, G.N. (1988). Detection of chemically induced aneuploidy by the Vicia faba root tip assay. Toxicology and Industrial Health, 4(2), 257–267. https://doi.org/10.1177/074823378800400207
  • Sasaki, Y.F., Nishidate, E., Izumiyama, F., Matsusaka, N., & Tsuda, S. (1997). Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow). Mutation Research, 391(3), 215–231. https://doi.org/10.1016/S1383-5718(97)00073-9
  • Savage, J.R. (1993). Update on target theory as applied to chromosomal aberrations. Environmental and Molecular Mutagenesis, 22(4), 198–207. https://doi.org/10.1002/em.2850220404
  • Savva, D. (2000). The Use of Arbitrarily Primed PCR (AP-PCR) Fingerprinting to Detect Exposure to Genotoxic Chemicals. Ecotoxicology, 9(5), 341–353. https://doi.org/10.1023/A:1026577326366
  • Saxena, N., Ansari, K.M., Kumar, R., Dhawan, A., Dwivedi, P.D., & Das, M. (2009). Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p(53) and p(21/WAF1) proteins in skin of mice. Toxicology and Applied Pharmacology, 234(2), 192–201. https://doi.org/10.1016/j.taap.2008.09.033
  • Schaeffer, B.K., Curphey, T.J., & Longnecker, D.S. (1987). Mutagenicity of L-azaserine for V79 cells in a pancreatic acinar cell-mediated mutagenesis assay. Pancreas, 2(5), 518–522. https://doi.org/10.1097/00006676-198709000-00005
  • Schafhauser, T., Kirchner, N., Kulik, A., Huijbers, M.M.E., Flor, L., Caradec, T., … van Pée, K.H. (2016). The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in Talaromyces islandicus (Penicillium islandicum). Environmental Microbiology, 18(11), 3728–3741. https://doi.org/10.1111/1462-2920.13294
  • Scheutwinkel, M., v. d. Hude, W., & Basler, A. (1986). Studies on the genotoxicity of the anabolic drugs trenbolone and zeranol. Archives of Toxicology, 59(1), 4–6. https://doi.org/10.1007/BF00263948
  • Schoch, U., Lüthy, J., & Schlatter, C. (1984). Mutagenicity testing of commercially used strains of P. camemberti and P. roqueforti. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 178(5), 351–355. https://doi.org/10.1007/bf01042226
  • Schrader, T.J., Cherry, W., Soper, K., & Langlois, I. (2006). Further examination of the effects of nitrosylation on Alternaria alternata mycotoxin mutagenicity in vitro. Mutation Research, 606(1–2), 61–71. https://doi.org/10.1016/j.mrgentox.2006.02.008
  • Schrader, T.J., Cherry, W., Soper, K., Langlois, I., & Vijay, H.M. (2001). Examination of Alternaria alternata mutagenicity and effects of nitrosylation using the Ames Salmonella test. Teratogenesis, Carcinogenesis, and Mutagenesis, 21(4), 261–274. https://doi.org/10.1002/tcm.1014
  • Schumacher, D.M., Metzler, M., & Lehmann, L. (2005). Mutagenicity of the mycotoxin patulin in cultured Chinese hamster V79 cells, and its modulation by intracellular glutathione. Archives of Toxicology, 79(2), 110–121. https://doi.org/10.1007/s00204-004-0612-x
  • Schwarz, C., Tiessen, C., Kreutzer, M., Stark, T., Hofmann, T., & Marko, D. (2012). Characterization of a genotoxic impact compound in Alternaria alternata infested rice as Altertoxin II. Archives of Toxicology, 86(12), 1911–1925. https://doi.org/10.1007/s00204-012-0958-4
  • Scott, P.M., & Stoltz, D.R. (1980). Mutagens produced by Alternaria alternata. Mutation Research, 78(1), 33–40. https://doi.org/10.1016/0165-1218(80)90023-3
  • Šegvić Klarić, M., Jakšić Despot, D., Kopjar, N., Rašić, D., Kocsubé, S., Varga, J., & Peraica, M. (2015). Cytotoxic and genotoxic potencies of single and combined spore extracts of airborne OTA-producing and OTA-non-producing Aspergilli in Human lung A549 cells. Ecotoxicology and Environmental Safety, 120, 206–214. https://doi.org/10.1016/j.ecoenv.2015.06.002
  • Shah, A.J., Prasanth Kumar, S., Rao, M.V., & Pandya, H.A. (2018). Ameliorative effects of curcumin towards cyclosporine-induced genotoxic potential: An in vitro and in silico study. Drug and Chemical Toxicology, 41(3), 259–269. https://doi.org/10.1080/01480545.2017.1380660
  • Shepherd, J., Tsao, M.S., & Duguid, W.P. (1990). Genotoxicity of pancreatic chemical carcinogens to propagable cultured normal pancreatic epithelial cells. Experimental and Molecular Pathology, 53(3), 203–210. https://doi.org/10.1016/0014-4800(90)90044-e
  • Shibuya, T., Murota, T., Sakamoto, K., Iwahara, S., & Ikeno, M. (1982). Mutagenicity and dominant lethal test of kojic acid—Ames test, forward mutation test in cultured Chinese hamster cells and dominant lethal test in mice. The Journal of Toxicological Sciences, 7(4), 255–262. https://doi.org/10.2131/jts.7.255
  • Shin, K.T., Guo, J., Niu, Y.J., & Cui, X.S. (2018). The toxic effect of aflatoxin B1 on early porcine embryonic development. Theriogenology, 118, 157–163. https://doi.org/10.1016/j.theriogenology.2018.06.002
  • Simarro Doorten, Y., Nijmeijer, S., de Nijs-Tjon, L., & Fink-Gremmels, J. (2006). Metabolism-mediated Ochratoxin A genotoxicity in the single-cell gel electrophoresis (Comet) assay. Food and Chemical Toxicology, 44(2), 261–270. https://doi.org/10.1016/j.fct.2005.07.009
  • Singh, S., Banerjee, S., Chattopadhyay, P., Borthakur, S.K., & Veer, V. (2015). Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture. Toxicology Mechanisms and Methods, 25(3), 184–191. https://doi.org/10.3109/15376516.2015.1006743
  • Sokolovic, M., Garaj-Vrhovac, V., Ramic, S., & Simpraga, B. (2007). Chicken nucleated blood cells as a cellular model for genotoxicity testing using the comet assay. Food and Chemical Toxicology, 45(11), 2165–2170. https://doi.org/10.1016/j.fct.2007.05.013
  • Solhaug, A., Vines, L.L., Ivanova, L., Spilsberg, B., Holme, J.A., Pestka, J., … Eriksen, G.S. (2012). Mechanisms involved in alternariol-induced cell cycle arrest. Mutation Research, 738–739, 1–11. https://doi.org/10.1016/j.mrfmmm.2012.09.001
  • Song, E., Xia, X., Su, C., Dong, W., Xian, Y., Wang, W., & Song, Y. (2014). Hepatotoxicity and genotoxicity of patulin in mice, and its modulation by green tea polyphenols administration. Food and Chemical Toxicology, 71, 122–127. https://doi.org/10.1016/j.fct.2014.06.009
  • Sonoda, E., Sasaki, M.S., Morrison, C., Yamaguchi-Iwai, Y., Takata, M., & Takeda, S. (1999). Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Molecular and Cellular Biology, 19(7), 5166–5169.
  • Sorenson, W.G., Tucker, J.D., & Simpson, J.P. (1984). Mutagenicity of tetramic mycotoxin cyclopiazonic acid. Applied and Environmental Microbiology, 47(6), 1355–1357.
  • Šrám, R.J., Zudová, Z., & Goetz, P. (1974). The mutagenic effect or lysergic acid diethylamide II. Dominant lethal test in mice. Mutation Research, 26(6), 517–522. https://doi.org/10.1016/S0027-5107(74)80053-9
  • Stanimirovic, Z., Stevanovic, J., Bajic, V., & Radovic, I. (2007). Evaluation of genotoxic effects of fumagillin by cytogenetic tests in vivo. Mutation Research, 628(1), 1–10. https://doi.org/10.1016/j.mrgentox.2006.09.014
  • Stark, A.A., Townsend, J.M., Wogan, G.N., Demain, A.L., Manmade, A., & Ghosh, A.C. (1978). Mutagenicity and antibacterial activity of mycotoxins produced by Penicillium islandicum Sopp and Penicillium rugulosum. Journal of Environmental Pathology and Toxicology, 2(2), 313–324.
  • Stevanovic, J., Stanimirovic, Z., Radakovic, M., & Stojic, V. (2008). In vitro evaluation of the clastogenicity of fumagillin. Environmental and Molecular Mutagenesis, 49(8), 594–601. https://doi.org/10.1002/em.20409
  • Surrallés, J., Xamena, N., Creus, A., & Marcos, R. (1995). The suitability of the micronucleus assay in human lymphocytes as a new biomarker of excision repair. Mutation Research, 342(1–2), 43–59. https://doi.org/10.1016/0165-1218(95)90089-6
  • Suzuki, H., Ikeda, N., Kobayashi, K., Terashima, Y., Shimada, Y., Suzuki, T., … Hayashi, M. (2005). Evaluation of liver and peripheral blood micronucleus assays with 9 chemicals using young rats. Mutation Research, 583(2), 133–145. https://doi.org/10.1016/j.mrgentox.2005.03.012
  • Swaileh, K.M., Hussein, R., & Ezzughayyar, A. (2008). Evaluating wastewater-induced plant genotoxicity using randomly amplified polymorphic DNA. Environmental Toxicology, 23(1), 117–122. https://doi.org/10.1002/tox.20316
  • Takakura, N., Nesslany, F., Fessard, V., & Le Hegarat, L. (2014). Absence of in vitro genotoxicity potential of the mycotoxin deoxynivalenol in bacteria and in human TK6 and HepaRG cell lines. Food and Chemical Toxicology, 66, 113–121. https://doi.org/10.1016/j.fct.2014.01.029
  • Tatay, E., Espín, S., García-Fernández, A.J., & Ruiz, M.J. (2017). Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 45(3), 334–339. https://doi.org/10.1016/j.tiv.2017.04.026
  • Tatay, E., Font, G., & Ruiz, M.J. (2016). Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells. Food and Chemical Toxicology, 96, 43–49. https://doi.org/10.1016/j.fct.2016.07.027
  • Test No. 473: In vitro Mammalian Chromosome Aberration Test. Retrieved December 6, 2019, from https://www.oecd-ilibrary.org/environment/test-no-473-in-vitro-mammalian-chromosome-aberration-test_9789264071261-en
  • Test No. 474: Mammalian Erythrocyte Micronucleus Test. Retrieved December 6, 2019, from https://www.oecd-ilibrary.org/environment/test-no-474-mammalian-erythrocyte-micronucleus-test_9789264264762-en
  • Test No. 475: Mammalian Bone Marrow Chromosomal Aberration Test. Retrieved December 6, 2019, from https://www.oecd-ilibrary.org/environment/test-no-475-mammalian-bone-marrow-chromosomal-aberration-test_9789264224407-en
  • Test No. 479: Genetic Toxicology: In vitro Sister Chromatid Exchange Assay in Mammalian Cells. Retrieved December 6, 2019, from https://www.oecd-ilibrary.org/environment/test-no-479-genetic-toxicology-in-vitro-sister-chromatid-exchange-assay-in-mammalian-cells_9789264071384-en
  • Theumer, M.G., Cánepa, M.C., López, A.G., Mary, V.S., Dambolena, J.S., & Rubinstein, H.R. (2010). Subchronic mycotoxicoses in Wistar rats: Assessment of the in vivo and in vitro genotoxicity induced by fumonisins and aflatoxin B(1), and oxidative stress biomarkers status. Toxicology, 268(1–2), 104–110. https://doi.org/10.1016/j.tox.2009.12.007
  • Thust, R., & Kneist, S. (1979). Activity of citrinin metabolized by rat and human microsome fractions in clastogenicity and SCE assays on Chinese hamster V79-E cells. Mutation Research, 67(4), 321–330. https://doi.org/10.1016/0165-1218(79)90028-4
  • Thust, R., Kneist, S., & Hühne, V. (1983). Genotoxicity of Fusarium mycotoxins (nivalenol, fusarenon-X, T-2 toxin, and zearalenone) in Chinese hamster V79-E cells in vitro. Archiv Fur Geschwulstforschung, 53(1), 9–15.
  • Tiessen, C., Ellmer, D., Mikula, H., Pahlke, G., Warth, B., Gehrke, H., … Marko, D. (2017). Impact of phase I metabolism on uptake, oxidative stress and genotoxicity of the emerging mycotoxin alternariol and its monomethyl ether in esophageal cells. Archives of Toxicology, 91(3), 1213–1226. https://doi.org/10.1007/s00204-016-1801-0
  • Tiessen, C., Fehr, M., Schwarz, C., Baechler, S., Domnanich, K., Böttler, U., … Marko, D. (2013). Modulation of the cellular redox status by the Alternaria toxins alternariol and alternariol monomethyl ether. Toxicology Letters, 216(1), 23–30. https://doi.org/10.1016/j.toxlet.2012.11.005
  • Tikkanen, L., Matsushima, T., & Natori, S. (1983). Mutagenicity of anthraquinones in the Salmonella preincubation test. Mutation Research, 116(3–4), 297–304. https://doi.org/10.1016/0165-1218(83)90067-8
  • Topaktas, M., & Rencuzogullari, E. (2010). Sitogenetik (Cytogenetic). Ankara, Turkey. Nobel Press.
  • Tsuda, S., Kosaka, Y., Murakami, M., Matsuo, H., Matsusaka, N., Taniguchi, K., & Sasaki, Y.F. (1998). Detection of nivalenol genotoxicity in cultured cells and multiple mouse organs by the alkaline single-cell gel electrophoresis assay. Mutation Research, 415(3), 191–200. https://doi.org/10.1016/s1383-5718(98)00068-0
  • Tucker, J.D., Auletta, A., Cimino, M.C., Dearfield, K.L., Jacobson-Kram, D., Tice, R.R., & Carrano, A.V. (1993). Sister-chromatid exchange: Second report of the Gene-Tox Program. Mutation Research, 297(2), 101–180. https://doi.org/10.1016/0165-1110(93)90001-4
  • Tyson, C.K., & Mirsalis, J.C. (1985). Measurement of unscheduled DNA synthesis in rat kidney cells following in vivo treatment with genotoxic agents. Environmental Mutagenesis, 7(6), 889–899. https://doi.org/10.1002/em.2860070610
  • Uhl, M., Helma, C., & Knasmüller, S. (2000). Evaluation of the single cell gel electrophoresis assay with human hepatoma (Hep G2) cells. Mutation Research, 468(2), 213–225. https://doi.org/10.1016/s1383-5718(00)00051-6
  • Umeda, M., Tsutsui, T., & Saito, M. (1977). Mutagenicity and inducibility of DNA single-strand breaks and chromosome aberrations by various mycotoxins. Gann Japanese Journal of Cancer Research, 68(5), 619–625.
  • Unlu, S., & Saglar, E. (2015). Evaluation of Cytogenetic and Genotoxic Effects of Oxalic Acid by the Alkaline Comet Assay and QRT PCR in Human Buccal Epithelial Cells. Analytical and Quantitative Cytopathology and Histopathology, 37(6), 347–352.
  • Van den Heever, J.P., Thompson, T.S., Curtis, J.M., & Pernal, S.F. (2015). Stability of dicyclohexylamine and fumagillin in honey. Food Chemistry, 179, 152–158. https://doi.org/10.1016/j.foodchem.2015.01.111
  • Van Went, G.F. (1978). Mutagenicity testing of 3 hallucinogens: LSD, psilocybin and delta 9-THC, using the micronucleus test. Experientia, 34(3), 324–325. https://doi.org/10.1007/bf01923013
  • Venier, P., Montini, R., Zordan, M., Clonfero, E., Paleologo, M., & Levis, A.G. (1989). Induction of SOS response in Escherichia coli strain PQ37 by 16 chemical compounds and human urine extracts. Mutagenesis, 4(1), 51–57. https://doi.org/10.1093/mutage/4.1.51
  • Wang, J.C., & Qian, B.L. (1997). Detection of DNA damage in peripheral lymphocytes by 7 compounds using comet assay. Zhongguo Yao Li Xue Bao = Acta Pharmacologica Sinica, 18(5), 451–454.
  • Wangenheim, J., & Bolcsfoldi, G. (1988). Mouse lymphoma L5178Y thymidine kinase locus assay of 50 compounds. Mutagenesis, 3(3), 193–205. https://doi.org/10.1093/mutage/3.3.193
  • Wehner, F.C., Marasas, W.F., & Thiel, P.G. (1978a). Lack of mutagenicity to Salmonella typhimurium of some Fusarium mycotoxins. Applied and Environmental Microbiology, 35(4), 659–662.
  • Wehner, F.C., Thiel, P.G., & Vleggaar, R. (1979). Mutagenicity of 5,6-dimethoxysterigmatocystin, a metabolite from Aspergillus multicolor, in the Salmonella/microsome system. Applied and Environmental Microbiology, 38(5), 1015–1017.
  • Wehner, F.C., Thiel, P.G., van Rensburg, S.J., & Demasius, I.P.C. (1978b). Mutagenicity to Salmonella typhimurium of some Aspergillus and Penicillium mycotoxins. Mutation Research, 58(2), 193–203. https://doi.org/10.1016/0165-1218(78)90009-5
  • Wei, C.I., Huang, T.S., Fernando, S.Y., & Chung, K.T. (1991). Mutagenicity studies of kojic acid. Toxicology Letters, 59(1–3), 213–220. https://doi.org/10.1016/0378-4274(91)90074-g
  • Williams, J.G., Deschl, U., & Williams, G.M. (2011). DNA damage in fetal liver cells of turkey and chicken eggs dosed with aflatoxin B1. Archives of Toxicology, 85(9), 1167–1172. https://doi.org/10.1007/s00204-011-0653-x
  • Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., & Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531–6535. https://doi.org/10.1093/nar/18.22.6531
  • Wilson, W.R., Harris, N.M., & Ferguson, L.R. (1984). Comparison of the mutagenic and clastogenic activity of amsacrine and other DNA-intercalating drugs in cultured V79 Chinese hamster cells. Cancer Research, 44(10), 4420–4431.
  • Wong, J.J., Singh, R., & Hsieh, D.P. (1977). Mutagenicity of fungal metabolites related to aflatoxin biosynthesis. Mutation Research, 44(3), 447–450. https://doi.org/10.1016/0027-5107(77)90102-6
  • Würgler, F.E., Friederich, U., & Schlatter, J. (1991). Lack of mutagenicity of ochratoxin A and B, citrinin, patulin and cnestine in Salmonella typhimurium TA102. Mutation Research, 261(3), 209–216. https://doi.org/10.1016/0165-1218(91)90069-X
  • Xu, J., Whong, W.Z., & Ong, T. (1984). Validation of the Salmonella (SV50)/arabinose-resistant forward mutation assay system with 26 compounds. Mutation Research, 130(2), 79–86. https://doi.org/10.1016/0165-1161(84)90107-9
  • Yamamoto, K.N., Hirota, K., Kono, K., Takeda, S., Sakamuru, S., Xia, M., … Tice, R.R. (2011). Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines. Environmental and Molecular Mutagenesis, 52(7), 547–561. https://doi.org/10.1002/em.20656
  • Yang, T.H., Wu, T.H., Chang, Y.L., Liao, H.T., Hsu, C.C., Tsai, C.Y., & Chou, Y.C. (2018). Cyclosporine for the treatment of lupus nephritis in patients with systemic lupus erythematosus. Clinical Nephrology, 89(4), 277–285. https://doi.org/10.5414/CN109325
  • Yang, W., Yu, M., Fu, J., Bao, W., Wang, D., Hao, L., … Liu, L. (2014). Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes. Food and Chemical Toxicology, 64, 383–396. https://doi.org/10.1016/j.fct.2013.12.012
  • Yen, G.C., Chang, Y.C., Sheu, F., & Chiang, H.C. (2001). Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. Journal of Agricultural and Food Chemistry, 49(3), 1426–1431. https://doi.org/10.1021/jf001109t
  • Yourtee, D.M., & Kirk-Yourtee, C.L. (1986). The mutagenicity of aflatoxin Q1 to Salmonella typhimurium TA 100 with or without rat or human liver microsomal preparations. Research Communications in Chemical Pathology and Pharmacology, 54(1), 101–113.
  • Yuzawa, K., Kondo, I., Fukao, K., Iwasaki, Y., & Hamaguchi, H. (1986). Mutagenicity of cyclosporine. Induction of sister chromatid exchange in human cells. Transplantation, 42(1), 61–63.
  • Zain, M.E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129–144. https://doi.org/10.1016/j.jscs.2010.06.006
  • Zeljezić, D., Domijan, A.M., & Peraica, M. (2006). DNA damage by ochratoxin A in rat kidney assessed by the alkaline comet assay. Brazilian Journal of Medical and Biological Research, 39(12), 1563–1568. https://doi.org/10.1590/s0100-879x2006001200006
  • Zhang, D., Cui, Y., Shen, H., Xing, L., Cui, J., Wang, J., & Zhang, X. (2013). Sterigmatocystin-induced DNA damage triggers G2 arrest via an ATM/p53-related pathway in human gastric epithelium GES-1 cells in vitro. PloS One, 8(5), e65044. https://doi.org/10.1371/journal.pone.0065044
  • Zhang, J., Zheng, N., Liu, J., Li, F.D., Li, S.L., & Wang, J.Q. (2015). Aflatoxin B1 and aflatoxin M1 induced cytotoxicity and DNA damage in differentiated and undifferentiated Caco-2 cells. Food and Chemical Toxicology, 83, 54–60. https://doi.org/10.1016/j.fct.2015.05.020
  • Zhang, X., Jiang, L., Geng, C., Cao, J., & Zhong, L. (2009). The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon, 54(4), 513–518. https://doi.org/10.1016/j.toxicon.2009.05.021
  • Zhang, Y.F., Yang, J.Y., Li, Y.K., & Zhou, W. (2017). Toxicity and oxidative stress induced by T-2 toxin in cultured mouse Leydig cells. Toxicology Mechanisms and Methods, 27(2), 100–106. https://doi.org/10.1080/15376516.2016.1258747
  • Zhang, Z., Fu, J., Yao, B., Zhang, X., Zhao, P., & Zhou, Z. (2011). In vitro genotoxicity of danthron and its potential mechanism. Mutation Research, 722(1), 39–43. https://doi.org/10.1016/j.mrgentox.2011.02.006
  • Zhiyi, R., & Haowen, Y. (2004). A method for genotoxicity detection using random amplified polymorphism DNA with Danio rerio. Ecotoxicology and Environmental Safety, 58(1), 96–103. https://doi.org/10.1016/j.ecoenv.2003.09.016
  • Zhou, S., Jiang, L., Geng, C., Cao, J., & Zhong, L. (2010). Patulin-induced oxidative DNA damage and p53 modulation in HepG2 cells. Toxicon, 55(2), 390–395. https://doi.org/10.1016/j.toxicon.2009.08.019
  • Zurlo, J., Roebuck, B.D., Rutkowski, J.V., Curphey, T.J., & Longnecker, D.S. (1984). Effect of pyridoxal deficiency on pancreatic DNA damage and nodule induction by azaserine. Carcinogenesis, 5(5), 555–558. https://doi.org/10.1093/carcin/5.5.555
  • Zwanenburg, T.S., & Cordier, A. (1994). No cyclosporin-induced chromosomal aberrations in human peripheral blood lymphocytes in vitro. Mutation Research, 320(3), 217–221. https://doi.org/10.1016/0165-1218(94)90048-5

Mikotoksinlerin Genotoksik ve Mutajenik Etkileri: Derleme

Year 2019, Volume: 3 Issue: 2, 132 - 161, 20.12.2019
https://doi.org/10.31594/commagene.633418

Abstract










Bu makalede, çeşitli mantar türleri tarafından
üretilen mikotoksinlerin genotoksik ve mutajenik etkileri derlenmiştir.
Literatürde toplam 259 mikotoksin bulundu. Bunların 109'unun genotoksik
etkileri daha önce araştırıldı. Bugüne kadar yapılmış olan çalışmalarda,
çalışılan mikotoksinler arasında sadece aktinomisin D, aflatoksin, alternaril,
chrysazin (dantron), sitrinin, fumonisin, mitomisin C, nivalenol, okratoksin A,
patulin, sterigmatosistin, versicolorin A ve B, vomitoksin ve zearalenon
genotoksik etki göstermiş veya genotoksik etkileri kanıtlanmıştır. Diğer
mikotoksinlerin herhangi bir genotoksik etkisi olup olmadığını belirlemek için
ek çalışmalar gereklidir. Bu çalışma, daha önce çalışılan mikotoksinler
hakkında önemli bilgiler sunmaktadır. Dolayısıyla bu derleme, araştırmacılara,
daha önce hiç çalışılmamış olan mikotoksinlerle ilgili gelecekteki çalışmaları
tasarlama konusunda katkı sağlayabilir.

References

  • Abd-Allah, G.A., el-Fayoumi, R.I., Smith, M.J., Heckmann, R.A., & O’Neill, K.L. (1999). A comparative evaluation of aflatoxin B1 genotoxicity in fish models using the Comet assay. Mutation Research, 446(2), 181–188. https://doi.org/10.1016/s1383-5718(99)00181-3
  • Abdel-Wahhab, M.A., El-Nekeety, A.A., Salman, A.S., Abdel-Aziem, S.H., Mehaya, F.M., & Hassan, N.S. (2018). Protective capabilities of silymarin and inulin nanoparticles against hepatic oxidative stress, genotoxicity and cytotoxicity of Deoxynivalenol in rats. Toxicon, 142, 1–13. https://doi.org/10.1016/j.toxicon.2017.12.045
  • Abid-Essefi, S., Baudrimont, I., Hassen, W., Ouanes, Z., Mobio, T.A., Anane, R., … Bacha, H. (2003). DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: Prevention by Vitamin E. Toxicology, 192(2–3), 237–248. https://doi.org/10.1016/s0300-483x(03)00329-9
  • Aichinger, G., Beisl, J., & Marko, D. (2017). Genistein and delphinidin antagonize the genotoxic effects of the mycotoxin alternariol in human colon carcinoma cells. Molecular Nutrition & Food Research, 61(2). https://doi.org/10.1002/mnfr.201600462
  • Alarcón-Herrera, N., Flores-Maya, S., Bellido, B., García-Bores, A. M., Mendoza, E., Ávila-Acevedo, G., & Hernández-Echeagaray, E. (2017). Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food and Chemical Toxicology, 109(2), 1018–1025. https://doi.org/10.1016/j.fct.2017.04.048
  • Albertini, R.J., Anderson, D., Douglas, G.R., Hagmar, L., Hemminki, K., Merlo, F., … Aitio, A. (2000). IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutation Research, 463(2), 111–172. https://doi.org/10.1016/s1383-5742(00)00049-1
  • Aleksic, B., Draghi, M., Ritoux, S., Bailly, S., Lacroix, M., Oswald, I.P., … Robine, E. (2017). Aerosolization of mycotoxins after growth of toxinogenic fungi on wallpaper. Applied and Environmental Microbiology, 83(16). https://doi.org/10.1128/AEM.01001-17
  • Ali, R., Guo, X., Lin, H., Khan, Q.M., Ismail, M., Waheed, U., … Bhalli, J.A. (2014). Mutant frequency in comparison to oxidative DNA damage induced by ochratoxin A in L5178Y tk+/- (3.7.2C) mouse lymphoma cells. Drug and Chemical Toxicology, 37(2), 227–232. https://doi.org/10.3109/01480545.2013.838775
  • Ali, R., Mittelstaedt, R.A., Shaddock, J.G., Ding, W., Bhalli, J.A., Khan, Q.M., & Heflich, R.H. (2011). Comparative analysis of micronuclei and DNA damage induced by Ochratoxin A in two mammalian cell lines. Mutation Research, 723(1), 58–64. https://doi.org/10.1016/j.mrgentox.2011.04.002
  • Alves, I., Oliveira, N.G., Laires, A., Rodrigues, A.S., & Rueff, J. (2000). Induction of micronuclei and chromosomal aberrations by the mycotoxin patulin in mammalian cells: Role of ascorbic acid as a modulator of patulin clastogenicity. Mutagenesis, 15(3), 229–234. https://doi.org/10.1093/mutage/15.3.229
  • Anisha, C., Sachidanandan, P., & Radhakrishnan, E.K. (2018). Endophytic Paraconiothyrium sp. from zingiber officinale rosc. displays broad-spectrum antimicrobial activity by production of danthron. Current Microbiology, 75(3), 343–352. https://doi.org/10.1007/s00284-017-1387-7
  • Anninou, N., Chatzaki, E., Papachristou, F., Pitiakoudis, M., & Simopoulos, C. (2014). Mycotoxins’ activity at toxic and sub-toxic concentrations: Differential cytotoxic and genotoxic effects of single and combined administration of sterigmatocystin, ochratoxin A and citrinin on the hepatocellular cancer cell line Hep3B. International Journal of Environmental Research and Public Health, 11(2), 1855–1872. https://doi.org/10.3390/ijerph110201855
  • Aoyama, K., Iwahori, K., & Miyata, N. (2003). Application of Euglena gracilis cells to comet assay: Evaluation of DNA damage and repair. Mutation Research, 538(1–2), 155–162. https://doi.org/10.1016/s1383-5718(03)00113-x
  • Aranda, M., Pérez-Alzola, L.P., Ellahueñe, M.F., & Sepúlveda, C. (2000). Assessment of in vitro mutagenicity in Salmonella and in vivo genotoxicity in mice of the mycotoxin fumonisin B(1). Mutagenesis, 15(6), 469–471. https://doi.org/10.1093/mutage/15.6.469
  • Arbillaga, L., Azqueta, A., Ezpeleta, O., & López de Cerain, A. (2007). Oxidative DNA damage induced by Ochratoxin A in the HK-2 human kidney cell line: Evidence of the relationship with cytotoxicity. Mutagenesis, 22(1), 35–42. https://doi.org/10.1093/mutage/gel049
  • Atherton, G, & Betb, B. (2019). Secondary metabolites. Retrieved from http://www.aspergillus.org.uk/metabolite-images/secondary-metabolites
  • Atienzar, F.A., & Jha, A.N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: A critical review. Mutation Research, 613(2–3), 76–102. https://doi.org/10.1016/j.mrrev.2006.06.001
  • Atienzar, F.A., Cordi, B., Donkin, M.E., Evenden, A.J., Jha, A.N., & Depledge, M.H. (2000). Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmata. Aquatic Toxicology, 50(1), 1–12. https://doi.org/10.1016/S0166-445X(99)00100-9
  • Auffray, Y., & Boutibonnes, P. (1987). Genotoxic activity of some mycotoxins using the SOS chromotest. Mycopathologia, 100(1), 49–53. https://doi.org/10.1007/BF00769568
  • Aupanun, S., Poapolathep, S., Giorgi, M., Imsilp, K., & Poapolathep, A. (2017). An overview of the toxicology and toxicokinetics of fusarenon-X, a type B trichothecene mycotoxin. The Journal of Veterinary Medical Science, 79(1), 6–13. https://doi.org/10.1292/jvms.16-0008
  • Awad, W.A., Ghareeb, K., Dadak, A., Gille, L., Staniek, K., Hess, M., & Böhm, J. (2012). Genotoxic effects of deoxynivalenol in broiler chickens fed low-protein feeds. Poultry Science, 91(3), 550–555. https://doi.org/10.3382/ps.2011-01742
  • Awad, Wageha A., Ghareeb, K., Dadak, A., Hess, M., & Böhm, J. (2014). Single and combined effects of deoxynivalenol mycotoxin and a microbial feed additive on lymphocyte DNA damage and oxidative stress in broiler chickens. PLOS ONE, 9(1), e88028. https://doi.org/10.1371/journal.pone.0088028
  • Aydın, M., Arslan, M., Rencüzoğulları, E., Gözaydın, C., Genç, A., & Bayram, S. (2017). Investigation of XRCC1 Arg399Gln, Arg280His, and Arg194Trp polymorphisms effects on the induction of micronucleus by Aflatoxin B1 in in vitro. Gene Reports, 9, 1–6. https://doi.org/10.1016/j.genrep.2017.08.002
  • Ayed-Boussema, I., Ouanes, Z., Bacha, H., & Abid, S. (2007). Toxicities induced in cultured cells exposed to zearalenone: Apoptosis or mutagenesis? Journal of Biochemical and Molecular Toxicology, 21(3), 136–144. https://doi.org/10.1002/jbt.20171
  • Ayed, Y., Ayed-Boussema, I., Ouanes, Z., & Bacha, H. (2011). In vitro and in vivo induction of chromosome aberrations by alpha- and beta-zearalenols: Comparison with zearalenone. Mutation Research, 726(1), 42–46. https://doi.org/10.1016/j.mrgentox.2011.08.003
  • Banerjee, S., & Paruthy, S.B. (2016). Preclinical and clinical perspective on fungal metabolites and their analogs as anticancer agents – from bench to bedside. In J.M. Mérillon & K.G. Ramawat (Eds.), Fungal Metabolites (pp. 1–32). https://doi.org/10.1007/978-3-319-19456-1_22-1
  • Bartholomew, R.M., & Ryan, D.S. (1980). Lack of mutagenicity of some phytoestrogens in the Salmonella/mammalian microsome assay. Mutation Research, 78(4), 317–321. https://doi.org/10.1016/0165-1218(80)90036-1
  • Batiste-Alentorn, M., Xamena, N., Creus, A., & Marcos, R. (1995). Genotoxicity testing of five compounds in three Drosophila short-term somatic assays. Mutation Research, 341(3), 161–167. https://doi.org/10.1016/0165-1218(95)90006-3
  • Bayram, S., Rencüzoğulları, E., Almas, A.M., & Genç, A. (2016). Effect of p53 Arg72Pro polymorphism on the induction of micronucleus by aflatoxin B1 in in vitro in human blood lymphocytes. Drug and Chemical Toxicology, 39(3), 331–337. https://doi.org/10.3109/01480545.2015.1121275
  • Becerril, C., Ferrero, M., Sanz, F., & Castaño, A. (1999). Detection of mitomycin C-induced genetic damage in fish cells by use of RAPD. Mutagenesis, 14(5), 449–456. https://doi.org/10.1093/mutage/14.5.449
  • Behm, C., Degen, G.H., & Föllmann, W. (2009). The Fusarium toxin enniatin B exerts no genotoxic activity, but pronounced cytotoxicity in vitro. Molecular Nutrition & Food Research, 53(4), 423–430. https://doi.org/10.1002/mnfr.200800183
  • Bełdowski, J., Been, R., & Turmus, E.K. (2017). Towards the Monitoring of Dumped Munitions Threat (MODUM): A Study of Chemical Munitions Dumpsites in the Baltic Sea. Dordrecht, The Netherlands, Springer.
  • Beljanski, M., Le Goff, L., & Beljanski, M. (1982). In vitro screening of carcinogens using DNA of the His- mutant of Salmonella typhimurium. Experimental Cell Biology, 50(5), 271–280.
  • Bendele, A.M., Neal, S.B., Oberly, T.J., Thompson, C.Z., Bewsey, B.J., Hill, L.E., … Probst, G.S. (1985). Evaluation of ochratoxin A for mutagenicity in a battery of bacterial and mammalian cell assays. Food and Chemical Toxicology, 23(10), 911–918. https://doi.org/10.1016/0278-6915(85)90107-3
  • Benedict, W.F., Baker, M.S., Haroun, L., Choi, E., & Ames, B.N. (1977). Mutagenicity of cancer chemotherapeutic agents in the Salmonella/microsome test. Cancer Research, 37(7 Pt 1), 2209–2213.
  • Bennett, J.W. & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516.
  • Bensassi, F., El Golli-Bennour, E., Abid-Essefi, S., Bouaziz, C., Hajlaoui, M.R., & Bacha, H. (2009). Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells. Toxicology, 264(1–2), 104–109. https://doi.org/10.1016/j.tox.2009.07.020
  • Bhat, P.V., Pandareesh, M.D., Khanum, F., & Tamatam, A. (2016). Cytotoxic Effects of Ochratoxin A in Neuro-2a Cells: Role of Oxidative Stress Evidenced by N-acetylcysteine. Frontiers in Microbiology, 7, 1142. https://doi.org/10.3389/fmicb.2016.01142
  • Bjeldanes, L.F., & Chew, H. (1979). Mutagenicity of 1,2-dicarbonyl compounds: Maltol, kojic acid, diacetyl and related substances. Mutation Research, 67(4), 367–371. https://doi.org/10.1016/0165-1218(79)90034-X
  • Blanc, P.J., Laussac, J.P., Le Bars, J., Le Bars, P., Loret, M.O., Pareilleux, A., … Goma, G. (1995). Characterization of monascidin A from Monascus as citrinin. International Journal of Food Microbiology, 27(2–3), 201–213. https://doi.org/10.1016/0168-1605(94)00167-5
  • Bonassi, S., Hagmar, L., Strömberg, U., Montagud, A.H., Tinnerberg, H., Forni, A., … Norppa, H. (2000). Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. European Study Group on Cytogenetic Biomarkers and Health. Cancer Research, 60(6), 1619–1625.
  • Bonassi, S., Ugolini, D., Kirsch-Volders, M., Strömberg, U., Vermeulen, R., & Tucker, J.D. (2005). Human population studies with cytogenetic biomarkers: Review of the literature and future prospectives. Environmental and Molecular Mutagenesis, 45(2–3), 258–270. https://doi.org/10.1002/em.20115
  • Bonassi, S., Znaor, A., Ceppi, M., Lando, C., Chang, W.P., Holland, N., … Fenech, M. (2007). An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis, 28(3), 625–631. https://doi.org/10.1093/carcin/bgl177
  • Bonassi, S., Znaor, A., Norppa, H., & Hagmar, L. (2004). Chromosomal aberrations and risk of cancer in humans: An epidemiologic perspective. Cytogenetic and Genome Research, 104(1–4), 376–382. https://doi.org/10.1159/000077519
  • Bony, S., Carcelen, M., Olivier, L., & Devaux, A. (2006). Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the Comet assay. Toxicology Letters, 166(1), 67–76. https://doi.org/10.1016/j.toxlet.2006.04.010
  • Bony, S., Olivier-Loiseau, L., Carcelen, M., & Devaux, A. (2007). Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line. Toxicology in vitro: An International Journal Published in Association with BIBRA, 21(3), 457–465. https://doi.org/10.1016/j.tiv.2006.10.014
  • Bosio, P., Siciliano, I., Gilardi, G., Gullino, M., & Garibaldi, A. (2017). Verrucarin A and roridin E produced on rocket by Myrothecium roridum under different temperatures and CO2 levels. World Mycotoxin Journal, 10(3), 229–236. https://doi.org/10.3920/WMJ2017.2198
  • Bouslimi, A., Bouaziz, C., Ayed-Boussema, I., Hassen, W., & Bacha, H. (2008). Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome aberrations in mice bone marrow cells. Toxicology, 251(1–3), 1–7. https://doi.org/10.1016/j.tox.2008.06.008
  • Brkanac, S.R., Gerić, M., Gajski, G., Vujčić, V., Garaj-Vrhovac, V., Kremer, D., & Domijan, A.M. (2015). Toxicity and antioxidant capacity of Frangula alnus Mill. Bark and its active component emodin. Regulatory Toxicology and Pharmacology: RTP, 73(3), 923–929. https://doi.org/10.1016/j.yrtph.2015.09.025
  • Browning, L.S. (1968). Lysergic acid diethylamine: Mutagenic effects in Drosophila. Science (New York, N.Y.), 161(3845), 1022–1023. https://doi.org/10.1126/science.161.3845.1022
  • Brugger, E.M., Wagner, J., Schumacher, D.M., Koch, K., Podlech, J., Metzler, M., & Lehmann, L. (2006). Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicology Letters, 164(3), 221–230. https://doi.org/10.1016/j.toxlet.2006.01.001
  • Carrano, A.V., & Natarajan, A.T. (1988). Considerations for population monitoring using cytogenetic techniques. Mutation Research, 204(3), 379–406. https://doi.org/10.1016/0165-1218(88)90036-5
  • Carrano, A.V., Thompson, L.H., Lindl, P.A., & Minkler, J.L. (1978). Sister chromatid exchange as an indicator of mutagenesis. Nature, 271(5645), 551–553. https://doi.org/10.1038/271551a0
  • Celik, M., Aksoy, H., & Yilmaz, S. (2010). Evaluation of beauvericin genotoxicity with the chromosomal aberrations, sister-chromatid exchanges and micronucleus assays. Ecotoxicology and Environmental Safety, 73(7), 1553–1557. https://doi.org/10.1016/j.ecoenv.2010.07.036
  • Celik, M., Yilmaz, S., Aksoy, H., Unal, F., Yüzbaşioğlu, D., & Dönbak, L. (2009). Evaluation of the genotoxicity of Fusarium mycotoxin moniliformin in human peripheral blood lymphocytes. Environmental and Molecular Mutagenesis, 50(5), 431–434. https://doi.org/10.1002/em.20459
  • Chagas, F.O., Dias, L.G., & Pupo, M.T. (2013). A mixed culture of endophytic fungi increases production of antifungal polyketides. Journal of Chemical Ecology, 39(10), 1335–1342. https://doi.org/10.1007/s10886-013-0351-7
  • Chang, H.T., Chou, C.T., Chen, I.S., Yu, C.C., Lu, T., Hsu, S.S., … Liang, W.Z. (2016). Mechanisms underlying effect of the mycotoxin cytochalasin B on induction of cytotoxicity, modulation of cell cycle, Ca2+ homeostasis and ROS production in human breast cells. Toxicology, 370, 1–19. https://doi.org/10.1016/j.tox.2016.09.006
  • Chen, C., Wang, J., Liu, J., Zhu, H., Sun, B., Wang, J., … Zhang, Y. (2015). Armochaetoglobins A-J: Cytochalasan Alkaloids from Chaetomium globosum TW1-1, a Fungus derived from the terrestrial arthropod Armadillidium vulgare. Journal of Natural Products, 78(6), 1193–1201. https://doi.org/10.1021/np500626x
  • Chen, Y.Y., Chiang, S.Y., Lin, J.G., Yang, J.S., Ma, Y.S., Liao, C.L., … Chung, J.G. (2010). Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells. Anticancer Research, 30(3), 945–951.
  • Cheng, T.J., Christiani, D.C., Xu, X., Wain, J.C., Wiencke, J.K., & Kelsey, K.T. (1996). Increased micronucleus frequency in lymphocytes from smokers with lung cancer. Mutation Research, 349(1), 43–50. https://doi.org/10.1016/0027-5107(95)00150-6
  • Cho, J.M., Davis, D.M.R., Wetter, D.A., Bartley, A.C., & Brewer, J.D. (2018). Association between atopic dermatitis and squamous cell carcinoma: A case-control study. International Journal of Dermatology, 57(3), 313–316. https://doi.org/10.1111/ijd.13857
  • Cilião, H.L., Ribeiro, D.L., Camargo-Godoy, R.B.O., Specian, A.F.L., Serpeloni, J.M., & Cólus, I.M.S. (2015). Cytotoxic and genotoxic effects of high concentrations of the immunosuppressive drugs cyclosporine and tacrolimus in MRC-5 cells. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 67(2), 179–187. https://doi.org/10.1016/j.etp.2014.11.008
  • Cohen, M.M., Marinello, M.J., & Back, N. (1967). Chromosomal damage in human leukocytes induced by lysergic acid diethylamide. Science (New York, N.Y.), 155(3768), 1417–1419. https://doi.org/10.1126/science.155.3768.1417
  • Cole, R.J., Taylor, N., Cole, J., & Arlett, C.F. (1981). Short-term tests for transplacentally active carcinogens: I. Micronucleus formation in fetal and maternal mouse erythroblasts. Mutation Research, 80(1), 141–157. https://doi.org/10.1016/0027-5107(81)90184-6
  • Corcuera, L.A., Vettorazzi, A., Arbillaga, L., Pérez, N., Gil, A. G., Azqueta, A., … López de Cerain, A. (2015). Genotoxicity of Aflatoxin B1 and Ochratoxin A after simultaneous application of the in vivo micronucleus and comet assay. Food and Chemical Toxicology, 76, 116–124. https://doi.org/10.1016/j.fct.2014.12.003
  • Costa, J.G., Saraiva, N., Guerreiro, P.S., Louro, H., Silva, M.J., Miranda, J.P., … Oliveira, N.G. (2016). Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: An integrative approach of complementary endpoints. Food and Chemical Toxicology, 87, 65–76. https://doi.org/10.1016/j.fct.2015.11.018
  • Crebelli, R., Carere, A., Conti, G., Conti, L., Rossi, C., & Tuttobello, L. (1988). Evaluation of the mutagenic activity of leucinostatins, a novel class of antibiotic peptides produced by Paecilomyces marquandii, in the modul Aspergillus nidulans. Microbiologica, 11(4), 299–305.
  • Creppy, E.E., Kane, A., Dirheimer, G., Lafarge-Frayssinet, C., Mousset, S., & Frayssinet, C. (1985). Genotoxicity of ochratoxin a in mice: DNA single-strand break evaluation in spleen, liver and kidney. Toxicology Letters, 28(1), 29–35. https://doi.org/10.1016/0378-4274(85)90006-2
  • Curry, P.T., Reed, R.N., Martino, R.M., & Kitchin, R.M. (1984). Induction of sister-chromatid exchanges in vivo in mice by the mycotoxins sterigmatocystin and griseofulvin. Mutation Research, 137(2–3), 111–115. https://doi.org/10.1016/0165-1218(84)90099-5
  • Davis, V.M., & Stack, M.E. (1991). Mutagenicity of stemphyltoxin III, a metabolite of Alternaria alternata. Applied and Environmental Microbiology, 57(1), 180–182.
  • de Melo, F.T., de Oliveira, I.M., Greggio, S., Dacosta, J.C., Guecheva, T.N., Saffi, J., … Rosa, R.M. (2012). DNA damage in organs of mice treated acutely with patulin, a known mycotoxin. Food and Chemical Toxicology, 50(10), 3548–3555. https://doi.org/10.1016/j.fct.2011.12.022
  • De Wolf, H., Blust, R., & Backeljau, T. (2004). The population genetic structure of Littorina littorea (Mollusca: Gastropoda) along a pollution gradient in the Scheldt estuary (The Netherlands) using RAPD analysis. The Science of the Total Environment, 325(1–3), 59–69. https://doi.org/10.1016/j.scitotenv.2003.11.004
  • Dean, R., Bynum, G., Kram, D., & Schneider, E.L. (1980). Sister-chromatid exchange induction by carcinogens in HTC cells: An in vitro system which does not require addition of activating factors. Mutation Research, 74(6), 477–483. https://doi.org/10.1016/0165-1161(80)90178-8
  • Degen, G.H., Lebrun, S., Lektarau, Y., & Föllmann, W. (2005). Modulation of ochratoxin A induced DNA-damage in urothelial cell cultures. Mycotoxin Research, 21(1), 57–60. https://doi.org/10.1007/BF02954819
  • Dellarco, V.L., Mavournin, K.H., & Tice, R.R. (1985). Aneuploidy and health risk assessment: Current status and future directions. Environmental Mutagenesis, 7(3), 405–424. https://doi.org/10.1002/em.2860070314
  • DeMarini, D.M., Brock, K.H., Doerr, C.L., & Moore, M.M. (1987). Mutagenicity of actinomycin D in mammalian cells due to clastogenic effects. Mutation Research, 192(2), 151–155. https://doi.org/10.1016/0165-7992(87)90113-8
  • Devnarain, N., Tiloke, C., Nagiah, S., & Chuturgoon, A.A. (2017). Fusaric acid induces oxidative stress and apoptosis in human cancerous oesophageal SNO cells. Toxicon, 126, 4–11. https://doi.org/10.1016/j.toxicon.2016.12.006
  • Domijan, A.M., Gajski, G., Novak Jovanović, I., Gerić, M., & Garaj-Vrhovac, V. (2015). In vitro genotoxicity of mycotoxins ochratoxin A and fumonisin B(1) could be prevented by sodium copper chlorophyllin—Implication to their genotoxic mechanism. Food Chemistry, 170, 455–462. https://doi.org/10.1016/j.foodchem.2014.08.036
  • Domijan, A.M., Zeljezić, D., Kopjar, N., & Peraica, M. (2006). Standard and Fpg-modified comet assay in kidney cells of ochratoxin A- and fumonisin B(1)-treated rats. Toxicology, 222(1–2), 53–59. https://doi.org/10.1016/j.tox.2006.01.024
  • Domijan, A.M., Zeljezić, D., Milić, M., & Peraica, M. (2007). Fumonisin B(1): Oxidative status and DNA damage in rats. Toxicology, 232(3), 163–169. https://doi.org/10.1016/j.tox.2007.01.007
  • Donmez-Altuntas, H., Gokalp-Yildiz, P., Bitgen, N., & Hamurcu, Z. (2013). Evaluation of genotoxicity, cytotoxicity and cytostasis in human lymphocytes exposed to patulin by using the cytokinesis-block micronucleus cytome (CBMN cyt) assay. Mycotoxin Research, 29(2), 63–70. https://doi.org/10.1007/s12550-012-0153-8
  • Dönmez-Altuntas, H., Dumlupinar, G., Imamoglu, N., Hamurcu, Z., & Liman, B.C. (2007). Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. Journal of Applied Toxicology: JAT, 27(4), 337–341. https://doi.org/10.1002/jat.1209
  • Dönmez-Altuntaş, H., Hamurcu, Z., Imamoglu, N., & Liman, B.C. (2003). Effects of ochratoxin A on micronucleus frequency in human lymphocytes. Die Nahrung, 47(1), 33–35. https://doi.org/10.1002/food.200390005
  • Dörrenhaus, A., Flieger, A., Golka, K., Schulze, H., Albrecht, M., Degen, G.H., & Föllmann, W. (2000). Induction of unscheduled DNA synthesis in primary human urothelial cells by the mycotoxin ochratoxin A. Toxicological Sciences: An Official Journal of the Society of Toxicology, 53(2), 271–277. https://doi.org/10.1093/toxsci/53.2.271
  • Duffaud, F., Orsière, T., Villani, P., Pelissier, A.L., Volot, F., Favre, R., & Botta, A. (1997). Comparison between micronucleated lymphocyte rates observed in healthy subjects and cancer patients. Mutagenesis, 12(4), 227–231. https://doi.org/10.1093/mutage/12.4.227
  • EFSA (2011). Opinion on genotoxicity testing strategies. Retrieved December 5, 2019, from European Food Safety Authority website: https://www.efsa.europa.eu/en/efsajournal/pub/2379
  • EFSA. (2017). Clarification of some aspects related to genotoxicity assessment. (2017, December 18). Retrieved December 5, 2019, from European Food Safety Authority website: https://www.efsa.europa.eu/en/efsajournal/pub/5113
  • Ehrlich, V., Darroudi, F., Uhl, M., Steinkellner, H., Gann, M., Majer, B.J., … Knasmüller, S. (2002a). Genotoxic effects of ochratoxin A in human-derived hepatoma (HepG2) cells. Food and Chemical Toxicology, 40(8), 1085–1090. https://doi.org/10.1016/S0278-6915(02)00045-5
  • Ehrlich, V., Darroudi, F., Uhl, M., Steinkellner, H., Zsivkovits, M., & Knasmueller, S. (2002b). Fumonisin B1 is genotoxic in human derived hepatoma (HepG2) cells. Mutagenesis, 17(3), 257–260. https://doi.org/10.1093/mutage/17.3.257
  • El. Khoury, D., Fayjaloun, S., Nassar, M., Sahakian, J., & Aad, P.Y. (2019). Updates on the effect of mycotoxins on male reproductive efficiency in mammals. Toxins, 11(9). https://doi.org/10.3390/toxins11090515
  • Escrivá, L., Font, G., & Manyes, L. (2015). In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology, 78, 185–206. https://doi.org/10.1016/j.fct.2015.02.005
  • Estop, A.M., Cieply, K., Vankirk, V., Munne, S., & Garver, K. (1991). Cytogenetic studies in human sperm. Human Genetics, 87(4), 447–451. https://doi.org/10.1007/BF00197166
  • Evans, H.J. (1984). Human Peripheral Blood Lymphocytes for the Analysis of Chromosome Aberrations in Mutagen Tests. In: Kilbey BJ, Legator M, Nichols W, Ramel C (eds) Handbook of Mutagenicity Test Procedures, 2nd ed. Elsevier Sci BV, pp. 405-427.
  • Evans, H.J., & O’Riordan, M.L. (1975). Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. Mutation Research, 31(3), 135–148. https://doi.org/10.1016/0165-1161(75)90082-5
  • Fabian, D., Rehák, P., Czikková, S., Il’ková, G., Baran, V., & Koppel, J. (2003). Induced cell death of preimplantation mouse embryos cultured in vitro evaluated by comet assay. Theriogenology, 60(4), 691–706. https://doi.org/10.1016/s0093-691x(03)00087-6
  • Fahmy, M.A., & Hassan, N.H. (1996). Cytogenetic effect of griseofulvin in mouse spermatocytes. Journal of Applied Toxicology: JAT, 16(2), 177–183. https://doi.org/10.1002/(SICI)1099-1263(199603)16:2<177::AID-JAT330>3.0.CO;2-T
  • Fenech, M., & Morley, A.A. (1985). Measurement of micronuclei in lymphocytes. Mutation Research, 147(1–2), 29–36. https://doi.org/10.1016/0165-1161(85)90015-9
  • Fenech, M., Holland, N., Chang, W.P., Zeiger, E., & Bonassi, S. (1999). The HUman MicroNucleus Project-An international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutation Research, 428(1–2), 271–283. https://doi.org/10.1016/s1383-5742(99)00053-8
  • Fenech, M.. (2002). Biomarkers of genetic damage for cancer epidemiology. Toxicology, 181–182, 411–416. https://doi.org/10.1016/s0300-483x(02)00480-8
  • Ferguson, L.R., Berriman, J., Pearson, A., Munday, R., Fowke, E.A., & Towers, N.R. (1992). In vitro and in vivo mutagenicity studies on sporidesmin, the toxin associated with facial eczema in ruminants. Mutation Research, 268(2), 199–210. https://doi.org/10.1016/0027-5107(92)90225-q
  • Fernández-Blanco, C., Font, G., & Ruiz, M.J. (2015). Oxidative DNA damage and disturbance of antioxidant capacity by alternariol in Caco-2 cells. Toxicology Letters, 235(2), 61–66. https://doi.org/10.1016/j.toxlet.2015.03.013
  • Ferrero, M., Castaño, A., Gonzalez, A., Sanz, F., & Becerril, C. (1998). Characterization of RTG-2 fish cell line by random amplified polymorphic DNA. Ecotoxicology and Environmental Safety, 40(1–2), 56–64. https://doi.org/10.1006/eesa.1998.1642
  • Fisher, C.R., Malling, H.V., De Serres, F.J., & Snyder, S. (1975). Mutagenicity of actinomycin D in Neurospora crassa. Mutation Research, 33(2–3), 187–192. https://doi.org/10.1016/0027-5107(75)90194-3
  • Flajs, D., & Peraica, M. (2009). Toxicological properties of citrinin. Arhiv Za Higijenu Rada I Toksikologiju, 60(4), 457–464. https://doi.org/10.2478/10004-1254-60-2009-1992
  • Fleck, S.C., Burkhardt, B., Pfeiffer, E., & Metzler, M. (2012). Alternaria toxins: Altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicology Letters, 214(1), 27–32. https://doi.org/10.1016/j.toxlet.2012.08.003
  • Fleck, S.C., Sauter, F., Pfeiffer, E., Metzler, M., Hartwig, A., & Köberle, B. (2016). DNA damage and repair kinetics of the Alternaria mycotoxins alternariol, altertoxin II and stemphyltoxin III in cultured cells. Mutation Research, 798–799, 27–34. https://doi.org/10.1016/j.mrgentox.2016.02.001
  • Flint, A., Forsey, R.R., & Usher, B. (1959). Griseofulvin, a new oral antibiotic for the treatment of fungous ınfections of the skin. Canadian Medical Association Journal, 81(3), 173–175.
  • Föllmann, W., & Lebrun, S. (2003). Uptake and genotoxic effects of ochratoxin A in cultured porcine urinary bladder epithelial cells. Mycotoxin Research, 19(1), 24–26. https://doi.org/10.1007/BF02940086
  • Föllmann, W., Behm, C., & Degen, G.H. (2007). Induction of micronuclei by ochratoxin A is a sensitive parameter of its genotoxicity in cultured cells. Mycotoxin Research, 23(2), 101. https://doi.org/10.1007/BF02946034
  • Föllmann, W., Hillebrand, I.E., Creppy, E.E., & Bolt, H.M. (1995). Sister chromatid exchange frequency in cultured isolated porcine urinary bladder epithelial cells (PUBEC) treated with ochratoxin A and alpha. Archives of Toxicology, 69(4), 280–286. https://doi.org/10.1007/s002040050171
  • Föllmann, Wolfram, Behm, C., & Degen, G.H. (2009). The emerging Fusarium toxin enniatin B: In vitro studies on its genotoxic potential and cytotoxicity in V79 cells in relation to other mycotoxins. Mycotoxin Research, 25(1), 11–19. https://doi.org/10.1007/s12550-008-0002-y
  • Frankic, T., Pajk, T., Rezar, V., Levart, A., & Salobir, J. (2006). The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes. Food and Chemical Toxicology, 44(11), 1838–1844. https://doi.org/10.1016/j.fct.2006.06.002
  • Frenzilli, G., Bosco, E., & Barale, R. (2000). Validation of single cell gel assay in human leukocytes with 18 reference compounds. Mutation Research, 468(2), 93–108. https://doi.org/10.1016/S1383-5718(00)00042-5
  • Fuska, J., Kuhr, I., Nemec, P., & Fusková, A. (1974). Antitumor antibiotics produced by Penicillium stipitatum Thom. The Journal of Antibiotics, 27(2), 123–127. https://doi.org/10.7164/antibiotics.27.123
  • Galvano, F., Campisi, A., Russo, A., Galvano, G., Palumbo, M., Renis, M., … Vanella, A. (2002a). DNA damage in astrocytes exposed to fumonisin B1. Neurochemical Research, 27(4), 345–351. https://doi.org/10.1023/a:1014971515377
  • Galvano, F., Russo, A., Cardile, V., Galvano, G., Vanella, A., & Renis, M. (2002b). DNA damage in human fibroblasts exposed to fumonisin B(1). Food and Chemical Toxicology, 40(1), 25–31. https://doi.org/10.1016/s0278-6915(01)00083-7
  • Gao, F., Jiang, L., Chen, M., Geng, C., Yang, G., Ji, F., … Liu, X. (2013). Genotoxic effects induced by zearalenone in a human embryonic kidney cell line. Mutation Research, 755(1), 6–10. https://doi.org/10.1016/j.mrgentox.2013.04.009
  • Gao, W., Jiang, L., Ge, L., Chen, M., Geng, C., Yang, G., … Liu, X. (2015). Sterigmatocystin-induced oxidative DNA damage in human liver-derived cell line through lysosomal damage. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 29(1), 1–7. https://doi.org/10.1016/j.tiv.2014.08.007
  • Geller, S., Xu, H., Lebwohl, M., Nardone, B., Lacouture, M.E., & Kheterpal, M. (2018). Malignancy Risk and Recurrence with Psoriasis and its Treatments: A Concise Update. American Journal of Clinical Dermatology, 19(3), 363–375. https://doi.org/10.1007/s40257-017-0337-2
  • Ghaderi, M., Allameh, A., Soleimani, M., Rastegar, H., & Ahmadi-Ashtiani, H.R. (2011). A comparison of DNA damage induced by aflatoxin B1 in hepatocyte-like cells, their progenitor mesenchymal stem cells and CD34(+) cells isolated from umbilical cord blood. Mutation Research, 719(1–2), 14–20. https://doi.org/10.1016/j.mrgentox.2010.09.005
  • Ghazi, T., Nagiah, S., Tiloke, C., Sheik Abdul, N., & Chuturgoon, A.A. (2017). Fusaric Acid Induces DNA Damage and Post-Translational Modifications of p53 in Human Hepatocellular Carcinoma (HepG2 ) Cells. Journal of Cellular Biochemistry, 118(11), 3866–3874. https://doi.org/10.1002/jcb.26037
  • Ghédira-Chékir, L., Maaroufi, K., Zakhama, A., Ellouz, F., Dhouib, S., Creppy, E.E., & Bacha, H. (1998). Induction of a SOS repair system in lysogenic bacteria by zearalenone and its prevention by vitamin E. Chemico-Biological Interactions, 113(1), 15–25. https://doi.org/10.1016/s0009-2797(98)00013-1
  • Glatt, H., Eich, E., Pertz, H., Becker, C., & Oesch, F. (1987). Mutagenicity experiments on agroclavines, new natural antineoplastic compounds. Cancer Research, 47(7), 1811–1814.
  • Glatt, H., Jung, R., & Oesch, F. (1983). Bacterial mutagenicity investigation of epoxides: Drugs, drug metabolites, steroids and pesticides. Mutation Research, 111(2), 99–118. https://doi.org/10.1016/0027-5107(83)90056-8
  • Glatt, H., Pertz, H., Kasper, R., & Eich, E. (1992). Clavine alkaloids and derivatives as mutagens detected in the Ames test. Anti-Cancer Drugs, 3(6), 609–614. https://doi.org/10.1097/00001813-199212000-00008
  • Goetz, P., Srám, R. J., & Zudová, Z. (1974). The mutagenic effect of lysergic acid diethylamide. I. Cytogenetic analysis. Mutation Research, 26(6), 513–516. https://doi.org/10.1016/s0027-5107(74)80052-7
  • Golli-Bennour, E.E., Kouidhi, B., Bouslimi, A., Abid-Essefi, S., Hassen, W., & Bacha, H. (2010). Cytotoxicity and genotoxicity induced by aflatoxin B1, ochratoxin A, and their combination in cultured Vero cells. Journal of Biochemical and Molecular Toxicology, 24(1), 42–50. https://doi.org/10.1002/jbt.20310
  • González-Arias, C.A., Benitez-Trinidad, A.B., Sordo, M., Robledo-Marenco, L., Medina-Díaz, I.M., Barrón-Vivanco, B.S., … Rojas-García, A.E. (2014). Low doses of ochratoxin A induce micronucleus formation and delay DNA repair in human lymphocytes. Food and Chemical Toxicology, 74, 249–254. https://doi.org/10.1016/j.fct.2014.10.006
  • González-Peñas, E., Vettorazzi, A., Lizarraga, E., Azqueta, A., & López de Cerain, A. (2019). Report of the IVth Workshop of the Spanish National Network on Mycotoxins and Toxigenic Fungi and Their Decontamination Processes (MICOFOOD), Held in Pamplona, Spain, 29–31 May 2019. Toxins, 11(7), 415. https://doi.org/10.3390/toxins11070415
  • Graf, U., Würgler, F.E., Katz, A.J., Frei, H., Juon, H., Hall, C.B., & Kale, P.G. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Environmental Mutagenesis, 6(2), 153–188. https://doi.org/10.1002/em.2860060206
  • Gupta, R.S., & Singh, B. (1982). Mutagenic responses of five independent genetic loci in CHO cells to a variety of mutagens. Development and characteristics of a mutagen screening system based on selection for multiple drug-resistant markers. Mutation Research, 94(2), 449–466. https://doi.org/10.1016/0027-5107(82)90307-4
  • Gürbüzel, M., Uysal, H., & Kızılet, H. (2015). Assessment of genotoxic potential of two mycotoxins in the wing spot test of Drosophila melanogaster. Toxicology and Industrial Health, 31(3), 261–267. https://doi.org/10.1177/0748233712472528
  • Hagmar, L., Brøgger, A., Hansteen, I.L., Heim, S., Högstedt, B., Knudsen, L., … Nordenson, I. (1994). Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic study group on the health risk of chromosome damage. Cancer Research, 54(11), 2919–2922.
  • Hansen, T.J. (1984). Ames mutagenicity tests on purified 3-nitropropionic acid. Food and Chemical Toxicology, 22(5), 399–401. https://doi.org/10.1016/0278-6915(84)90370-3
  • Hashimoto, K., Nakajima, Y., Matsumura, S., & Chatani, F. (2010). An in vitro micronucleus assay with size-classified micronucleus counting to discriminate aneugens from clastogens. Toxicology in vitro: An International Journal Published in Association with BIBRA, 24(1), 208–216. https://doi.org/10.1016/j.tiv.2009.09.006
  • Hassanane, M., Abdalla, E., El-Fiky, S., Amer, M., & Hamdy, A. (2000). Mutagenicity of the mycotoxin diacetoxyscirpenol on somatic and germ cells of mice. Mycotoxin Research, 16(1), 53–64. https://doi.org/10.1007/BF02946105
  • Hassen, W., Ayed-Boussema, I., Oscoz, A.A., Lopez, A.D.C., & Bacha, H. (2007). The role of oxidative stress in zearalenone-mediated toxicity in Hep G2 cells: Oxidative DNA damage, gluthatione depletion and stress proteins induction. Toxicology, 232(3), 294–302. https://doi.org/10.1016/j.tox.2007.01.015
  • Heddle, J.A., Cimino, M.C., Hayashi, M., Romagna, F., Shelby, M.D., Tucker, J.D., … MacGregor, J.T. (1991). Micronuclei as an index of cytogenetic damage: Past, present, and future. Environmental and Molecular Mutagenesis, 18(4), 277–291. https://doi.org/10.1002/em.2850180414
  • Helleday, T. (2003). Pathways for mitotic homologous recombination in mammalian cells. Mutation Research, 532(1–2), 103–115. https://doi.org/10.1016/j.mrfmmm.2003.08.013
  • Hennig, A., Fink-Gremmels, J., & Leistner, L. (1991). Mutagenicity and effects of ochratoxin A on the frequency of sister chromatid exchange after metabolic activation. IARC Scientific Publications, 115, 255–260.
  • Henninger, C., Huelsenbeck, J., Huelsenbeck, S., Grösch, S., Schad, A., Lackner, K.J., … Fritz, G. (2012). The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity. Toxicology and Applied Pharmacology, 261(1), 66–73. https://doi.org/10.1016/j.taap.2012.03.012
  • Higa, Y., Kawabe, M., Nabae, K., Toda, Y., Kitamoto, S., Hara, T., … Takahashi, M. (2007). Kojic acid -absence of tumor-initiating activity in rat liver, and of carcinogenic and photo-genotoxic potential in mouse skin. The Journal of Toxicological Sciences, 32(2), 143–159. https://doi.org/10.2131/jts.32.143
  • Horvatovich, K., Hafner, D., Bodnár, Z., Berta, G., Hancz, C., Dutton, M., & Kovács, M. (2013). Dose-related genotoxic effect of T-2 toxin measured by comet assay using peripheral blood mononuclear cells of healthy pigs. Acta Veterinaria Hungarica, 61(2), 175–186. https://doi.org/10.1556/AVet.2013.010
  • Hradil, C.M., Hallock, Y.F., Clardy, J., Kenfield, D.S., & Strobel, G. (1989). Phytotoxins from Alternaria cassiae. Phytochemistry, 28(1), 73–75. https://doi.org/10.1016/0031-9422(89)85011-3
  • Hsia, C.C., Wu, J.L., Lu, X.Q., & Li, Y.S. (1988). Natural occurrence and clastogenic effects of nivalenol, deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, and zearalenone in corn from a high-risk area of esophageal cancer. Cancer Detection and Prevention, 13(2), 79–86.
  • Hussein, H.S., & Brasel, J.M. (2001). Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167(2), 101–134. https://doi.org/10.1016/s0300-483x(01)00471-1
  • Inoue, H., Baba, H., Awano, K., & Yoshikawa, K. (1995). Genotoxic effect of griseofulvin in somatic cells of Drosophila melanogaster. Mutation Research, 343(4), 229–234. https://doi.org/10.1016/0165-1218(95)90018-7
  • Ivandić, E., & Bašić-Jukić, N. (2014). Liver damage caused by atorvastatin and cyclosporine in patients with renal transplant. Acta Medica Croatica: Casopis Hravatske Akademije Medicinskih Znanosti, 68(2), 175–178.
  • Jafari, M., Rezaei, M., Kalantari, H., & Hashemitabar, M. (2013). Determination of cell death induced by lovastatin on human colon cell line ht29 using the comet assay. Jundishapur Journal of Natural Pharmaceutical Products, 8(4), 187–191.
  • Jakšić, D., Puel, O., Canlet, C., Kopjar, N., Kosalec, I., & Klarić, M.Š. (2012). Cytotoxicity and genotoxicity of versicolorins and 5-methoxysterigmatocystin in A549 cells. Archives of Toxicology, 86(10), 1583–1591. https://doi.org/10.1007/s00204-012-0871-x
  • Jeswal, P. (1996). Citrinin-induced chromosomal abnormalities in the bone marrow cells of Mus musculus. Cytobios, 86(344), 29–33.
  • Kamp, H.G., Eisenbrand, G., Janzowski, C., Kiossev, J., Latendresse, J.R., Schlatter, J., & Turesky, R.J. (2005). Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats. Molecular Nutrition & Food Research, 49(12), 1160–1167. https://doi.org/10.1002/mnfr.200500124
  • Karuna, R., & Rao, B.S. (2013). Lack of micronuclei induction by fumonisin B1 mycotoxin in BALB/c mice. Mycotoxin Research, 29(1), 9–15. https://doi.org/10.1007/s12550-012-0149-4
  • Kawai, K., Mori, H., & Kitamura, J. (1983). The uncoupling effect of flavoglaucin, a quinol pigment from Aspergillus chevalieri (Mangin), on mitochondrial respiration. Toxicology Letters, 19(3), 321–325. https://doi.org/10.1016/0378-4274(83)90137-6
  • Kawai, K., Shiojiri, H., Nakamaru, T., Nozawa, Y., Sugie, S., Mori, H., … Ogihara, Y. (1985). Cytotoxicity and genotoxicity of xenoclauxin and desacetyl duclauxin from Penicillium duclauxii (delacroix). Cell Biology and Toxicology, 1(2), 1–10. https://doi.org/10.1007/BF00717786
  • Kaynarca, H. doruk, Hecer, C., & Ulusoy, B. (2019). Mycotoxin hazard in meat and meat products. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 14(1), 90–97. https://doi.org/10.17094/ataunivbd.449705
  • Kirsch-Volders, M., Elhajouji, A., Cundari, E., & Van Hummelen, P. (1997). The in vitro micronucleus test: A multi-endpoint assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss and non-disjunction. Mutation Research, 392(1–2), 19–30. https://doi.org/10.1016/s0165-1218(97)00042-6
  • Klarić, M.S., Darabos, D., Rozgaj, R., Kasuba, V., & Pepeljnjak, S. (2010). Beauvericin and ochratoxin A genotoxicity evaluated using the alkaline comet assay: Single and combined genotoxic action. Archives of Toxicology, 84(8), 641–650. https://doi.org/10.1007/s00204-010-0535-7
  • Klarić, M.S., Zelježić, D., Rumora, L., Peraica, M., Pepeljnjak, S., & Domijan, A.M. (2012). A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin A and citrinin. Archives of Toxicology, 86(1), 97–107. https://doi.org/10.1007/s00204-011-0735-9
  • Knasmüller, S., Bresgen, N., Kassie, F., Mersch-Sundermann, V., Gelderblom, W., Zöhrer, E., & Eckl, P.M. (1997). Genotoxic effects of three Fusarium mycotoxins, fumonisin B1, moniliformin and vomitoxin in bacteria and in primary cultures of rat hepatocytes. Mutation Research, 391(1–2), 39–48. https://doi.org/10.1016/s0165-1218(97)00030-x
  • Kocan, R.M., Landolt, M.L., & Sabo, K.M. (1982). Anaphase aberrations: A measure of genotoxicity in mutagen-treated fish cells. Environmental Mutagenesis, 4(2), 181–189. https://doi.org/10.1002/em.2860040208
  • Kokkonen, M., Ojala, L., Parikka, P., & Jestoi, M. (2010). Mycotoxin production of selected Fusarium species at different culture conditions. International Journal of Food Microbiology, 143(1–2), 17–25. https://doi.org/10.1016/j.ijfoodmicro.2010.07.015
  • Koppen, G., & Verschaeve, L. (1996). The alkaline comet test on plant cells: A new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mutation Research, 360(3), 193–200. https://doi.org/10.1016/s0165-1161(96)90017-5
  • Krishna, G., Kropko, M.L., & Theiss, J.C. (1989). Use of the cytokinesis-block method for the analysis of micronuclei in V79 Chinese hamster lung cells: Results with mitomycin C and cyclophosphamide. Mutation Research, 222(1), 63–69. https://doi.org/10.1016/0165-1218(89)90036-0
  • Krivobok, S., Olivier, P., Marzin, D.R., Seigle-Murandi, F., & Steiman, R. (1987). Study of the genotoxic potential of 17 mycotoxins with the SOS Chromotest. Mutagenesis, 2(6), 433–439. https://doi.org/10.1093/mutage/2.6.433
  • Krivobok, S., Seigle-Murandi, F., Steiman, R., Marzin, D.R., & Betina, V. (1992). Mutagenicity of substituted anthraquinones in the Ames/Salmonella microsome system. Mutation Research, 279(1), 1–8. https://doi.org/10.1016/0165-1218(92)90259-3
  • Kuhr, I., Fuska, J., Sedmera, P., Podojil, M., Vokoun, J., & Vanĕk, Z. (1973). An antitumor antibiotic produced by Penicillium stipitatum Thom; its identity with duclauxin. The Journal of Antibiotics, 26(9), 535–536. https://doi.org/10.7164/antibiotics.26.535
  • Kuroda, K., Hibi, D., Ishii, Y., Takasu, S., Kijima, A., Matsushita, K., … Umemura, T. (2014). Ochratoxin A induces DNA double-strand breaks and large deletion mutations in the carcinogenic target site of gpt delta rats. Mutagenesis, 29(1), 27–36. https://doi.org/10.1093/mutage/get054
  • Kuroda, K., Ishii, Y., Takasu, S., Kijima, A., Matsushita, K., Watanabe, M., … Umemura, T. (2013). Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis. Toxicology, 311(3), 216–224. https://doi.org/10.1016/j.tox.2013.07.003
  • Le Hegarat, L., Dumont, J., Josse, R., Huet, S., Lanceleur, R., Mourot, A., … Fessard, V. (2010). Assessment of the genotoxic potential of indirect chemical mutagens in HepaRG cells by the comet and the cytokinesis-block micronucleus assays. Mutagenesis, 25(6), 555–560. https://doi.org/10.1093/mutage/geq039
  • Lebrun, S., & Föllmann, W. (2002). Detection of ochratoxin A-induced DNA damage in MDCK cells by alkaline single cell gel electrophoresis (comet assay). Archives of Toxicology, 75(11), 734–741. https://doi.org/10.1007/s00204-001-0291-9
  • Lebrun, S., Golka, K., Schulze, H., & Föllmann, W. (2006). Glutathione S-transferase polymorphisms and ochratoxin A toxicity in primary human urothelial cells. Toxicology, 224(1–2), 81–90. https://doi.org/10.1016/j.tox.2006.04.034
  • Lee, H.Z., Lin, C.J., Yang, W.H., Leung, W.C., & Chang, S.P. (2006). Aloe-emodin induced DNA damage through generation of reactive oxygen species in human lung carcinoma cells. Cancer Letters, 239(1), 55–63. https://doi.org/10.1016/j.canlet.2005.07.036
  • Lerda, D., Biaggi Bistoni, M., Peralta, N., Ychari, S., Vazquez, M., & Bosio, G. (2005). Fumonisins in foods from Cordoba (Argentina), presence and genotoxicity. Food and Chemical Toxicology, 43(5), 691–698. https://doi.org/10.1016/j.fct.2004.12.019
  • Lerda, D., Biagi Bistoni, M., Pelliccioni, P., & Litterio, N. (2010). Allium cepa as a biomonitor of ochratoxin A toxicity and genotoxicity. Plant Biology (Stuttgart, Germany), 12(4), 685–688. https://doi.org/10.1111/j.1438-8677.2010.00337.x
  • Li, J.H., & Lin, L.F. (1998). Genetic toxicology of abused drugs: A brief review. Mutagenesis, 13(6), 557–565. https://doi.org/10.1093/mutage/13.6.557
  • Li, M.X. (1988). Mutagenicity and carcinogenicity of T-2 toxin, a trichothecene produced by Fusarium fungi. Zhonghua Zhong Liu Za Zhi [Chinese Journal of Oncology], 10(5), 326–329.
  • Li, W.Y., Chan, R.Y.K., Yu, P.H.F., & Chan, S.W. (2013). Emodin induces cytotoxic effect in human breast carcinoma MCF-7 cell through modulating the expression of apoptosis-related genes. Pharmaceutical Biology, 51(9), 1175–1181. https://doi.org/10.3109/13880209.2013.782322
  • Li, Y., Luan, Y., Qi, X., Li, M., Gong, L., Xue, X., … Ren, J. (2010). Emodin triggers DNA double-strand breaks by stabilizing topoisomerase II-DNA cleavage complexes and by inhibiting ATP hydrolysis of topoisomerase II. Toxicological Sciences: An Official Journal of the Society of Toxicology, 118(2), 435–443. https://doi.org/10.1093/toxsci/kfq282
  • Liberman, D.F., Schaefer, F.L., Fink, R.C., Ramgopal, M., Ghosh, A.C., & Mulcahy, R. (1980). Mutagenicity of islandicin and chrysophanol in the Salmonella/microsome system. Applied and Environmental Microbiology, 40(3), 476–479.
  • Limón, M.C., Rodríguez-Ortiz, R., & Avalos, J. (2010). Bikaverin production and applications. Applied Microbiology and Biotechnology, 87(1), 21–29. https://doi.org/10.1007/s00253-010-2551-1
  • Lin, L., Zhang, J., Wang, P., Wang, Y., & Chen, J. (1998). Thin-layer chromatography of mycotoxins and comparison with other chromatographic methods. Journal of Chromatography A, 815(1), 3–20. https://doi.org/10.1016/S0021-9673(98)00204-0
  • Lindholm, C., Norppa, H., Hayashi, M., & Sorsa, M. (1991). Induction of micronuclei and anaphase aberrations by cytochalasin B in human lymphocyte cultures. Mutation Research, 260(4), 369–375. https://doi.org/10.1016/0165-1218(91)90022-e
  • Lioi, M.B., Santoro, A., Barbieri, R., Salzano, S., & Ursini, M.V. (2004). Ochratoxin A and zearalenone: A comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Mutation Research, 557(1), 19–27. https://doi.org/10.1016/j.mrgentox.2003.09.009
  • Liu, B.H., Yu, F.Y., Wu, T.S., Li, S.Y., Su, M.C., Wang, M.C., & Shih, S.M. (2003). Evaluation of genotoxic risk and oxidative DNA damage in mammalian cells exposed to mycotoxins, patulin and citrinin. Toxicology and Applied Pharmacology, 191(3), 255–263. https://doi.org/10.1016/s0041-008x(03)00254-0
  • Liu, J., Wang, Y., Cui, J., Xing, L., Shen, H., Wu, S., … Zhang, X. (2012). Ochratoxin A induces oxidative DNA damage and G1 phase arrest in human peripheral blood mononuclear cells in vitro. Toxicology Letters, 211(2), 164–171. https://doi.org/10.1016/j.toxlet.2012.03.800
  • Liu, W., Xi, J., Cao, Y., You, X., Chen, R., Zhang, X., … Luan, Y. (2019). An adaption of human-ınduced hepatocytes to in vitro genetic toxicity Tests. Mutagenesis, 34(2), 165–171. https://doi.org/10.1093/mutage/gey041
  • Loi, M., Fanelli, F., Liuzzi, V.C., Logrieco, A.F., & Mulè, G. (2017). Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins, 9(4). https://doi.org/10.3390/toxins9040111
  • Lu, H.F., Lai, T.Y., Hsia, T.C., Tang, Y.J., Yang, J.S., Chiang, J.H., … Chung, J.G. (2010). Danthron induces DNA damage and inhibits DNA repair gene expressions in GBM 8401 human brain glioblastoma multiforms cells. Neurochemical Research, 35(7), 1105–1110. https://doi.org/10.1007/s11064-010-0161-z
  • Lusky, K., Wagner, U., Stähr, B., Doberschütz, K.D., & Peter, W. (1991). Investigations on possible genotoxic effects ofFusarium toxins in boars. Mycotoxin Research, 7(1), 29–34. https://doi.org/10.1007/BF03192161
  • Madle, E., Korte, A., & Beek, B. (1986). Species differences in mutagenicity testing: I. Micronucleus and SCE tests in rats, mice, and Chinese hamsters with aflatoxin B1. Teratogenesis, Carcinogenesis, and Mutagenesis, 6(1), 1–13. https://doi.org/10.1002/tcm.1770060102
  • Mailhes, J.B., Marchetti, F., & Aardema, M.J. (1993). Griseofulvin-induced aneuploidy and meiotic delay in mouse oocytes: Effect of dose and harvest time. Mutation Research, 300(3–4), 155–163. https://doi.org/10.1016/0165-1218(93)90047-h
  • Malaveille, C., Brun, G., & Bartsch, H. (1991). Genotoxicity of ochratoxin A and structurally related compounds in Escherichia coli strains: Studies on their mode of action. IARC Scientific Publications, 115, 261–266.
  • Malaveille, C., Brun, G., & Bartsch, H. (1994). Structure-activity studies in E. coli strains on ochratoxin A (OTA) and its analogues implicate a genotoxic free radical and a cytotoxic thiol derivative as reactive metabolites. Mutation Research, 307(1), 141–147. https://doi.org/10.1016/0027-5107(94)90286-0
  • Mally, A., Pepe, G., Ravoori, S., Fiore, M., Gupta, R.C., Dekant, W., & Mosesso, P. (2005). Ochratoxin a causes DNA damage and cytogenetic effects but no DNA adducts in rats. Chemical Research in Toxicology, 18(8), 1253–1261. https://doi.org/10.1021/tx049650x
  • Mamur, S., Ünal, F., Yılmaz, S., Erikel, E., & Yüzbaşıoğlu, D. (2018a). Evaluation of the cytotoxic and genotoxic effects of mycotoxin fusaric acid. Drug and Chemical Toxicology, 11, 1–9. https://doi.org/10.1080/01480545.2018.1499772
  • Mamur, S., Yuzbasioglu, D., Yılmaz, S., Erikel, E., & Unal, F. (2018b). Assessment of cytotoxic and genotoxic effects of enniatin-A in vitro. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 35(8), 1633–1644. https://doi.org/10.1080/19440049.2018.1486513
  • Marchetti, F., Aardema, M., Beevers, C., van Benthem, J., Douglas, G.R., Godschalk, R., … Williams, A. (2018). Simulation of mouse and rat spermatogenesis to inform genotoxicity testing using OECD test guideline 488. Mutation Research, 832–833, 19–28. https://doi.org/10.1016/j.mrgentox.2018.05.020
  • Marillia, E.F., & Scoles, G.J. (1996). The use of RAPD markers in Hordeum phylogeny. Genome, 39(4), 646–654. https://doi.org/10.1139/g96-082
  • Maron, D.M., & Ames, B.N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113(3–4), 173–215. https://doi.org/10.1016/0165-1161(83)90010-9
  • Matter, B.E., Donatsch, P., Racine, R.R., Schmid, B., & Suter, W. (1982). Genotoxicity evaluation of cyclosporin A, a new immunosuppressive agent. Mutation Research, 105(4), 257–264. https://doi.org/10.1016/0165-7992(82)90039-2
  • Matthiaschk, G., & Korte, A. (1986). Studies on the embryotoxicity and mutagenicity of mycotoxins. Mycotoxin Research, 2(2), 89–97. https://doi.org/10.1007/BF03191969
  • McGregor, D.B., Brown, A., Cattanach, P., Edwards, I., McBride, D., Riach, C., & Caspary, W.J. (1988). Responses of the L5178Y tk+/tk- mouse lymphoma cell forward mutation assay: III. 72 coded chemicals. Environmental and Molecular Mutagenesis, 12(1), 85–154. https://doi.org/10.1002/em.2860120111
  • Mengs, U., Schuler, D., & Marshall, R.R. (2001). No induction of chromosomal aberrations in Chinese hamster ovary cells by chrysophanol. Mutation Research, 492(1–2), 69–72. https://doi.org/10.1016/s1383-5718(01)00150-4
  • Migliore, L., & Nieri, M. (1991). Evaluation of twelve potential aneuploidogenic chemicals by the in vitro human lymphocyte micronucleus assay. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 5(4), 325–336. https://doi.org/10.1016/0887-2333(91)90009-3
  • Mikami, Y., Fukushima, K., Arai, T., Abe, F., Shibuya, H., & Ommura, Y. (1984). Leucinostatins, peptide mycotoxins produced by Paecilomyces lilacinus and their possible roles in fungal infection. Zentralblatt Fur Bakteriologie, Mikrobiologie, Und Hygiene. Series A, Medical Microbiology, Infectious Diseases, Virology, Parasitology, 257(2), 275–283.
  • Miranda, D.D.C., Arçari, D.P., Ladeira, M.S.P., Calori-Domingues, M.A., Romero, A. C., Salvadori, D. M. F., … Ribeiro, M. L. (2007). Analysis of DNA damage induced by aflatoxin B1 in Dunkin-Hartley guinea pigs. Mycopathologia, 163(5), 275–280. https://doi.org/10.1007/s11046-007-9014-y
  • Mirsalis, J.C., Tyson, C.K., & Butterworth, B.E. (1982). Detection of genotoxic carcinogens in the in vivo-in vitro hepatocyte DNA repair assay. Environmental Mutagenesis, 4(5), 553–562. https://doi.org/10.1002/em.2860040506
  • Miyamae, Y., Iwasaki, K., Kinae, N., Tsuda, S., Murakami, M., Tanaka, M., & Sasaki, Y.F. (1997). Detection of DNA lesions induced by chemical mutagens using the single-cell gel electrophoresis (comet) assay. 2. Relationship between DNA migration and alkaline condition. Mutation Research, 393(1–2), 107–113. https://doi.org/10.1016/s1383-5718(97)00091-0
  • Mok, Z.R., & Tey, H.L. (2018). Acquired idiopathic generalized anhidriosis: Successful treatment with cyclosporine in two cases. Dermatologic Therapy, 31(2), e12579. https://doi.org/10.1111/dth.12579
  • Mori, H., Kawai, K., Ohbayashi, F., Kitamura, J., & Nozawa, Y. (1983). Genotoxicity of quinone pigments from pathogenic fungi. Mutation Research, 122(1), 29–34. https://doi.org/10.1016/0165-7992(83)90138-0
  • Mori, H., Kawai, K., Ohbayashi, F., Kuniyasu, T., Yamazaki, M., Hamasaki, T., & Williams, G.M. (1984). Genotoxicity of a variety of mycotoxins in the hepatocyte primary culture/DNA repair test using rat and mouse hepatocytes. Cancer Research, 44(7), 2918–2923.
  • Mori, H., Sugie, S., Yoshimi, N., Kitamura, J., Niwa, M., Hamasaki, T., & Kawai, K. (1986). Genotoxic effects of a variety of sterigmatocystin-related compounds in the hepatocyte/DNA-repair test and the Salmonella microsome assay. Mutation Research, 173(3), 217–222. https://doi.org/10.1016/0165-7992(86)90039-4
  • Mori, H., Yoshimi, N., Iwata, H., Tanaka, T., Kawai, K., & Sankawa, U. (1988). Additional survey on genotoxicity of natural anthraquinones in the hepatocyte primary culture/DNA repair assay. The Journal of Toxicological Sciences, 13(3), 161–166. https://doi.org/10.2131/jts.13.161
  • Mori, Hideki, Kitamura, J., Sugie, S., Kawai, K., & Hamasaki, T. (1985). Genotoxicity of fungal metabolites related to aflatoxin B1 biosynthesis. Mutation Research Letters, 143(3), 121–125. https://doi.org/10.1016/S0165-7992(85)80021-X
  • Moulé, Y., Hermann, M., & Renault, G. (1981). Negative response of PR toxin in the Salmonella typhimurium/microsome test and sister-chromatid exchange assay. Mutation Research, 89(3), 203–207. https://doi.org/10.1016/0165-1218(81)90238-x
  • Muehlbauer, P.A., & Schuler, M.J. (2005). Detection of numerical chromosomal aberrations by flow cytometry: A novel process for identifying aneugenic agents. Mutation Research, 585(1), 156–169. https://doi.org/10.1016/j.mrgentox.2005.05.002
  • Mueller, S.O., Schmitt, M., Dekant, W., Stopper, H., Schlatter, J., Schreier, P., & Lutz, W.K. (1999). Occurrence of emodin, chrysophanol and physcion in vegetables, herbs and liquors. Genotoxicity and anti-genotoxicity of the anthraquinones and of the whole plants. Food and Chemical Toxicology, 37(5), 481–491. https://doi.org/10.1016/s0278-6915(99)00027-7
  • Munday, R., Pearson, A., & Ferguson, L.R. (1993). Mouse micronucleus assays of sporidesmin, the toxin associated with facial eczema in ruminants. Mutation Research, 302(1), 71–74. https://doi.org/10.1016/0165-7992(93)90092-a
  • Muneer, R.S. (1978). Effects of LSD on human chromosomes. Mutation Research, 51(3), 403–410. https://doi.org/10.1016/0027-5107(78)90128-8
  • Muthulakshmi, S., Maharajan, K., Habibi, H.R., Kadirvelu, K., & Venkataramana, M. (2018). Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio): Role of oxidative stress revealed by a multi biomarker study. Chemosphere, 198, 111–121. https://doi.org/10.1016/j.chemosphere.2018.01.141
  • Müller, S.O., Eckert, I., Lutz, W.K., & Stopper, H. (1996). Genotoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: Topoisomerase II mediated? Mutation Research, 371(3–4), 165–173. https://doi.org/10.1016/s0165-1218(96)90105-6
  • Müller, T. (1987). Carcinogenic and genotoxic effects of mycotoxins. Die Nahrung, 31(2), 117–125. https://doi.org/10.1002/food.19870310205
  • Nesslany, F., Simar-Meintières, S., Ficheux, H., & Marzin, D. (2009). Aloe-emodin-induced DNA fragmentation in the mouse in vivo comet assay. Mutation Research, 678(1), 13–19. https://doi.org/10.1016/j.mrgentox.2009.06.004
  • Nestmann, E.R., Nasim, A., Haynes, R.H., & Kowbel, D.J. (1981). Genetic activity of actinomycin D in Saccharomyces cerevisiae but not in Escherichia coli. Mutation Research, 89(3), 229–236.
  • Ni, C.H., Yu, C.S., Lu, H.F., Yang, J.S., Huang, H.Y., Chen, P.Y., … Chung, J.G. (2014). Chrysophanol-induced cell death (necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential. Environmental Toxicology, 29(7), 740–749. https://doi.org/10.1002/tox.21801
  • Nielsen, J., Friedrich, U., Jacobsen, E., & Tsuboi, T. (1968). Lysergide and chromosome abnormalities. British Medical Journal, 2(5608), 801–803.
  • Nieminen, S.M., Mäki-Paakkanen, J., Hirvonen, M.R., Roponen, M., & von Wright, A. (2002). Genotoxicity of gliotoxin, a secondary metabolite of Aspergillus fumigatus, in a battery of short-term test systems. Mutation Research, 520(1–2), 161–170. https://doi.org/10.1016/s1383-5718(02)00202-4
  • Nito, S., Ariyuki, F., & Okaniwa, A. (1988). Spontaneous expulsion of micronuclei by enucleation in the micronucleus assay. Mutation Research, 207(3–4), 185–192. https://doi.org/10.1016/0165-7992(88)90085-1
  • Noel, S., & Rath, S.K. (2006). Randomly amplified polymorphic DNA as a tool for genotoxicity: An assessment. Toxicology and Industrial Health, 22(6), 267–275. https://doi.org/10.1191/0748233706th267oa
  • Nohynek, G.J., Kirkland, D., Marzin, D., Toutain, H., Leclerc-Ribaud, C., & Jinnai, H. (2004). An assessment of the genotoxicity and human health risk of topical use of kojic acid [5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one]. Food and Chemical Toxicology, 42(1), 93–105. https://doi.org/10.1016/j.fct.2003.08.008
  • Norberto, A.H., Saúl, F.M., Belén, B., García-Bores Ana, M., Ernesto, M., Guillermo, Á.A., & Elizabeth, H.E. (2017). Raw data of the effects of Chlorogenic acid in 3-Nitropropionic acid induced toxicity and genotoxicity. Data in Brief, 14, 123–131. https://doi.org/10.1016/j.dib.2017.07.004
  • Norppa, H., & Falck, G.C.M. (2003). What do human micronuclei contain? Mutagenesis, 18(3), 221–233. https://doi.org/10.1093/mutage/18.3.221
  • Norppa, H., Bonassi, S., Hansteen, I.L., Hagmar, L., Strömberg, U., Rössner, P., … Fucic, A. (2006). Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutation Research, 600(1–2), 37–45. https://doi.org/10.1016/j.mrfmmm.2006.05.030
  • Norred, W.P., Plattner, R.D., Vesonder, R.F., Bacon, C.W., & Voss, K.A. (1992). Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food and Chemical Toxicology, 30(3), 233–237. https://doi.org/10.1016/0278-6915(92)90038-m
  • Nusuetrong, P., Saito, M., Kikuchi, H., Oshima, Y., Moriya, T., & Nakahata, N. (2012). Apoptotic effects of satratoxin H is mediated through DNA double-stranded break in PC12 cells. The Journal of Toxicological Sciences, 37(4), 803–812. https://doi.org/10.2131/jts.37.803
  • Obrecht-Pflumio, S., Chassat, T., Dirheimer, G., & Marzin, D. (1999). Genotoxicity of ochratoxin A by Salmonella mutagenicity test after bioactivation by mouse kidney microsomes. Mutation Research, 446(1), 95–102. https://doi.org/10.1016/s1383-5718(99)00152-7
  • OECD. (1986). Guideline for Testing of Chemicals "Genetic Toxicology: In vitro Sister Chromatid Exchange Assay in Mammalian Cells” Test No: 479.
  • OECD. (1997a). Guideline for Testing of Chemicals “In vitro Mammalian Chromosome Aberration Test” Test No: 473.
  • OECD. (1997b). Guideline for Testing of Chemicals “Mammalian Bone Marrow Chromosome Aberration Test” Test No: 475.
  • OECD. (2013). Mammalian erythrocyte micronucleus test. In: Guideline for the testing of chemicals. https://www.oecd-ilibrary.org/environment/test-no-474-mammalian-erythrocyte-micronucleus-test_9789264264762-en Accessed: 11 May 2018.
  • Ogiwara, Y., Sugiura, M., Watanabe, K., Tawara, J., Endo, E., Maruyama, H., … Kawasako, K. (2015). Evaluation of the repeated-dose liver, bone marrow and peripheral blood micronucleus and comet assays using kojic acid. Mutation Research, 780–781, 111–116. https://doi.org/10.1016/j.mrgentox.2015.01.004
  • Olive, P.L., & Banáth, J.P. (1997). Multicell Spheroid Response to Drugs Predicted with the Comet Assay. Cancer Research, 57(24), 5528–5533.
  • Oliveira, N.G., Castro, M., Rodrigues, A.S., Gil, O.M., Toscano-Rico, J.M., & Rueff, J. (2002). DNA-PK inhibitor wortmannin enhances DNA damage induced by bleomycin in V79 Chinese hamster cells. Teratogenesis, Carcinogenesis, and Mutagenesis, 22(5), 343–351. https://doi.org/10.1002/tcm.10029
  • Oliver, J., Meunier, J.R., Awogi, T., Elhajouji, A., Ouldelhkim, M.C., Bichet, N., … Lorge, E. (2006). SFTG international collaborative study on in vitro micronucleus test V. Using L5178Y cells. Mutation Research, 607(1), 125–152. https://doi.org/10.1016/j.mrgentox.2006.04.004
  • Oshiro, Y., Piper, C.E., Balwierz, P.S., & Soelter, S.G. (1991). Chinese hamster ovary cell assays for mutation and chromosome damage: Data from non-carcinogens. Journal of Applied Toxicology: JAT, 11(3), 167–177. https://doi.org/10.1002/jat.2550110304
  • Ostry, V. (2008). Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin Journal, 1(2), 175–188. https://doi.org/10.3920/WMJ2008.x013
  • Ouanes, Z., Abid, S., Ayed, I., Anane, R., Mobio, T., Creppy, E.E., & Bacha, H. (2003). Induction of micronuclei by Zearalenone in Vero monkey kidney cells and in bone marrow cells of mice: Protective effect of Vitamin E. Mutation Research, 538(1–2), 63–70. https://doi.org/10.1016/s1383-5718(03)00093-7
  • Parkes, D.J., & Scott, D. (1982). A quantitative comparison of cytogenetic effects of anti-tumor agents. Cytogenetics and Cell Genetics, 33(1–2), 27–34. https://doi.org/10.1159/000131722
  • Perry, P., & Evans, H.J. (1975). Cytological detection of mutagen–carcinogen exposure by sister chromatid exchange. Nature, 258(5531), 121–125. https://doi.org/10.1038/258121a0
  • Pfohl-Leszkowicz, A., Chekir-Ghedira, L., & Bacha, H. (1995). Genotoxicity of zearalenone, an estrogenic mycotoxin: DNA adduct formation in female mouse tissues. Carcinogenesis, 16(10), 2315–2320. https://doi.org/10.1093/carcin/16.10.2315
  • Phillips, D.H., & Arlt, V.M. (2009). Genotoxicity: damage to DNA and its consequences. In: Luch A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, Birkhäuser, Basel, Switzerland, vol. 99, pp. 87–110. https://doi.org/10.1007/978-3-7643-8336-7_4
  • Prata-Sena, M., Ramos, A.A., Buttachon, S., Castro-Carvalho, B., Marques, P., Dethoup, T., … Rocha, E. (2016). Cytotoxic activity of secondary metabolites from marine-derived Fungus Neosartorya siamensis in human cancer cells. Phytotherapy Research: PTR, 30(11), 1862–1871. https://doi.org/10.1002/ptr.5696
  • Pylkkänen, L., Jahnukainen, K., Parvinen, M., & Santti, R. (1991). Testicular toxicity and mutagenicity of steroidal and non-steroidal estrogens in the male mouse. Mutation Research, 261(3), 181–191. https://doi.org/10.1016/0165-1218(91)90066-u
  • Quillardet, P., Huisman, O., D’Ari, R., & Hofnung, M. (1982). SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 79(19), 5971–5975. https://doi.org/10.1073/pnas.79.19.5971
  • Ramesha, A., Venkataramana, M., Nirmaladevi, D., Gupta, V.K., Chandranayaka, S., & Srinivas, C. (2015). Cytotoxic effects of oosporein isolated from endophytic fungus Cochliobolus kusanoi. Frontiers in Microbiology, 6, 870. https://doi.org/10.3389/fmicb.2015.00870
  • Reddy, C.S., Reddy, R.V., Chan, P.K., & Hayes, A.W. (1980). Mutagenicity of secalonic acid D in mice. Journal of Environmental Pathology and Toxicology, 4(5–6), 31–37.
  • Rencuzogullari, E., & Aydin, M. (2018). Methodology of Genotoxic and Teratogenic Studies in Rats. Methods in Molecular Biology (Clifton, N.J.), 1797, 555–575. https://doi.org/10.1007/978-1-4939-7883-0_33
  • Rezar, V., Frankič, T., Narat, M., Levart, A., & Salobir, J. (2007). Dose-Dependent Effects of T-2 Toxin on Performance, Lipid Peroxidation, and Genotoxicity in Broiler Chickens. Poultry Science, 86(6), 1155–1160. https://doi.org/10.1093/ps/86.6.1155
  • Robbiano, L., Baroni, D., Carrozzino, R., Mereto, E., & Brambilla, G. (2004). DNA damage and micronuclei induced in rat and human kidney cells by six chemicals carcinogenic to the rat kidney. Toxicology, 204(2), 187–195. https://doi.org/10.1016/j.tox.2004.06.057
  • Rogers, C.G., & Héroux-Metcalf, C. (1983). Cytotoxicity and absence of mutagenic activity of vomitoxin (4-deoxynivalenol) in a hepatocyte-mediated mutation assay with V79 Chinese hamster lung cells. Cancer Letters, 20(1), 29–35. https://doi.org/10.1016/0304-3835(83)90183-0
  • Rosefort, C., Fauth, E., & Zankl, H. (2004). Micronuclei induced by aneugens and clastogens in mononucleate and binucleate cells using the cytokinesis block assay. Mutagenesis, 19(4), 277–284. https://doi.org/10.1093/mutage/geh028
  • Russo, A., La Fauci, L., Acquaviva, R., Campisi, A., Raciti, G., Scifo, C., … Galvano, F. (2005). Ochratoxin A-induced DNA damage in human fibroblast: Protective effect of cyanidin 3-O-beta-d-glucoside. The Journal of Nutritional Biochemistry, 16(1), 31–37. https://doi.org/10.1016/j.jnutbio.2004.05.005
  • Sabater-Vilar, M., Nijmeijer, S., & Fink-Gremmels, J. (2003). Genotoxicity assessment of five tremorgenic mycotoxins (fumitremorgen B, paxilline, penitrem A, verruculogen, and verrucosidin) produced by molds isolated from fermented meats. Journal of Food Protection, 66(11), 2123–2129. https://doi.org/10.4315/0362-028x-66.11.2123
  • Sakai, M., Abe, K., Okumura, H., Kawamura, O., Sugiura, Y., Horie, Y., & Ueno, Y. (1992). Genotoxicity of fungi evaluated by SOS microplate assay. Natural Toxins, 1(1), 27–34. https://doi.org/10.1002/nt.2620010107
  • Salamone, M., Heddle, J., Stuart, E., & Katz, M. (1980). Towards an improved micronucleus test: Studies on 3 model agents, mitomycin C, cyclophosphamide and dimethylbenzanthracene. Mutation Research, 74(5), 347–356. https://doi.org/10.1016/0165-1161(80)90193-4
  • Sandhu, S.S., & Acedo, G.N. (1988). Detection of chemically induced aneuploidy by the Vicia faba root tip assay. Toxicology and Industrial Health, 4(2), 257–267. https://doi.org/10.1177/074823378800400207
  • Sasaki, Y.F., Nishidate, E., Izumiyama, F., Matsusaka, N., & Tsuda, S. (1997). Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow). Mutation Research, 391(3), 215–231. https://doi.org/10.1016/S1383-5718(97)00073-9
  • Savage, J.R. (1993). Update on target theory as applied to chromosomal aberrations. Environmental and Molecular Mutagenesis, 22(4), 198–207. https://doi.org/10.1002/em.2850220404
  • Savva, D. (2000). The Use of Arbitrarily Primed PCR (AP-PCR) Fingerprinting to Detect Exposure to Genotoxic Chemicals. Ecotoxicology, 9(5), 341–353. https://doi.org/10.1023/A:1026577326366
  • Saxena, N., Ansari, K.M., Kumar, R., Dhawan, A., Dwivedi, P.D., & Das, M. (2009). Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p(53) and p(21/WAF1) proteins in skin of mice. Toxicology and Applied Pharmacology, 234(2), 192–201. https://doi.org/10.1016/j.taap.2008.09.033
  • Schaeffer, B.K., Curphey, T.J., & Longnecker, D.S. (1987). Mutagenicity of L-azaserine for V79 cells in a pancreatic acinar cell-mediated mutagenesis assay. Pancreas, 2(5), 518–522. https://doi.org/10.1097/00006676-198709000-00005
  • Schafhauser, T., Kirchner, N., Kulik, A., Huijbers, M.M.E., Flor, L., Caradec, T., … van Pée, K.H. (2016). The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in Talaromyces islandicus (Penicillium islandicum). Environmental Microbiology, 18(11), 3728–3741. https://doi.org/10.1111/1462-2920.13294
  • Scheutwinkel, M., v. d. Hude, W., & Basler, A. (1986). Studies on the genotoxicity of the anabolic drugs trenbolone and zeranol. Archives of Toxicology, 59(1), 4–6. https://doi.org/10.1007/BF00263948
  • Schoch, U., Lüthy, J., & Schlatter, C. (1984). Mutagenicity testing of commercially used strains of P. camemberti and P. roqueforti. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 178(5), 351–355. https://doi.org/10.1007/bf01042226
  • Schrader, T.J., Cherry, W., Soper, K., & Langlois, I. (2006). Further examination of the effects of nitrosylation on Alternaria alternata mycotoxin mutagenicity in vitro. Mutation Research, 606(1–2), 61–71. https://doi.org/10.1016/j.mrgentox.2006.02.008
  • Schrader, T.J., Cherry, W., Soper, K., Langlois, I., & Vijay, H.M. (2001). Examination of Alternaria alternata mutagenicity and effects of nitrosylation using the Ames Salmonella test. Teratogenesis, Carcinogenesis, and Mutagenesis, 21(4), 261–274. https://doi.org/10.1002/tcm.1014
  • Schumacher, D.M., Metzler, M., & Lehmann, L. (2005). Mutagenicity of the mycotoxin patulin in cultured Chinese hamster V79 cells, and its modulation by intracellular glutathione. Archives of Toxicology, 79(2), 110–121. https://doi.org/10.1007/s00204-004-0612-x
  • Schwarz, C., Tiessen, C., Kreutzer, M., Stark, T., Hofmann, T., & Marko, D. (2012). Characterization of a genotoxic impact compound in Alternaria alternata infested rice as Altertoxin II. Archives of Toxicology, 86(12), 1911–1925. https://doi.org/10.1007/s00204-012-0958-4
  • Scott, P.M., & Stoltz, D.R. (1980). Mutagens produced by Alternaria alternata. Mutation Research, 78(1), 33–40. https://doi.org/10.1016/0165-1218(80)90023-3
  • Šegvić Klarić, M., Jakšić Despot, D., Kopjar, N., Rašić, D., Kocsubé, S., Varga, J., & Peraica, M. (2015). Cytotoxic and genotoxic potencies of single and combined spore extracts of airborne OTA-producing and OTA-non-producing Aspergilli in Human lung A549 cells. Ecotoxicology and Environmental Safety, 120, 206–214. https://doi.org/10.1016/j.ecoenv.2015.06.002
  • Shah, A.J., Prasanth Kumar, S., Rao, M.V., & Pandya, H.A. (2018). Ameliorative effects of curcumin towards cyclosporine-induced genotoxic potential: An in vitro and in silico study. Drug and Chemical Toxicology, 41(3), 259–269. https://doi.org/10.1080/01480545.2017.1380660
  • Shepherd, J., Tsao, M.S., & Duguid, W.P. (1990). Genotoxicity of pancreatic chemical carcinogens to propagable cultured normal pancreatic epithelial cells. Experimental and Molecular Pathology, 53(3), 203–210. https://doi.org/10.1016/0014-4800(90)90044-e
  • Shibuya, T., Murota, T., Sakamoto, K., Iwahara, S., & Ikeno, M. (1982). Mutagenicity and dominant lethal test of kojic acid—Ames test, forward mutation test in cultured Chinese hamster cells and dominant lethal test in mice. The Journal of Toxicological Sciences, 7(4), 255–262. https://doi.org/10.2131/jts.7.255
  • Shin, K.T., Guo, J., Niu, Y.J., & Cui, X.S. (2018). The toxic effect of aflatoxin B1 on early porcine embryonic development. Theriogenology, 118, 157–163. https://doi.org/10.1016/j.theriogenology.2018.06.002
  • Simarro Doorten, Y., Nijmeijer, S., de Nijs-Tjon, L., & Fink-Gremmels, J. (2006). Metabolism-mediated Ochratoxin A genotoxicity in the single-cell gel electrophoresis (Comet) assay. Food and Chemical Toxicology, 44(2), 261–270. https://doi.org/10.1016/j.fct.2005.07.009
  • Singh, S., Banerjee, S., Chattopadhyay, P., Borthakur, S.K., & Veer, V. (2015). Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture. Toxicology Mechanisms and Methods, 25(3), 184–191. https://doi.org/10.3109/15376516.2015.1006743
  • Sokolovic, M., Garaj-Vrhovac, V., Ramic, S., & Simpraga, B. (2007). Chicken nucleated blood cells as a cellular model for genotoxicity testing using the comet assay. Food and Chemical Toxicology, 45(11), 2165–2170. https://doi.org/10.1016/j.fct.2007.05.013
  • Solhaug, A., Vines, L.L., Ivanova, L., Spilsberg, B., Holme, J.A., Pestka, J., … Eriksen, G.S. (2012). Mechanisms involved in alternariol-induced cell cycle arrest. Mutation Research, 738–739, 1–11. https://doi.org/10.1016/j.mrfmmm.2012.09.001
  • Song, E., Xia, X., Su, C., Dong, W., Xian, Y., Wang, W., & Song, Y. (2014). Hepatotoxicity and genotoxicity of patulin in mice, and its modulation by green tea polyphenols administration. Food and Chemical Toxicology, 71, 122–127. https://doi.org/10.1016/j.fct.2014.06.009
  • Sonoda, E., Sasaki, M.S., Morrison, C., Yamaguchi-Iwai, Y., Takata, M., & Takeda, S. (1999). Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Molecular and Cellular Biology, 19(7), 5166–5169.
  • Sorenson, W.G., Tucker, J.D., & Simpson, J.P. (1984). Mutagenicity of tetramic mycotoxin cyclopiazonic acid. Applied and Environmental Microbiology, 47(6), 1355–1357.
  • Šrám, R.J., Zudová, Z., & Goetz, P. (1974). The mutagenic effect or lysergic acid diethylamide II. Dominant lethal test in mice. Mutation Research, 26(6), 517–522. https://doi.org/10.1016/S0027-5107(74)80053-9
  • Stanimirovic, Z., Stevanovic, J., Bajic, V., & Radovic, I. (2007). Evaluation of genotoxic effects of fumagillin by cytogenetic tests in vivo. Mutation Research, 628(1), 1–10. https://doi.org/10.1016/j.mrgentox.2006.09.014
  • Stark, A.A., Townsend, J.M., Wogan, G.N., Demain, A.L., Manmade, A., & Ghosh, A.C. (1978). Mutagenicity and antibacterial activity of mycotoxins produced by Penicillium islandicum Sopp and Penicillium rugulosum. Journal of Environmental Pathology and Toxicology, 2(2), 313–324.
  • Stevanovic, J., Stanimirovic, Z., Radakovic, M., & Stojic, V. (2008). In vitro evaluation of the clastogenicity of fumagillin. Environmental and Molecular Mutagenesis, 49(8), 594–601. https://doi.org/10.1002/em.20409
  • Surrallés, J., Xamena, N., Creus, A., & Marcos, R. (1995). The suitability of the micronucleus assay in human lymphocytes as a new biomarker of excision repair. Mutation Research, 342(1–2), 43–59. https://doi.org/10.1016/0165-1218(95)90089-6
  • Suzuki, H., Ikeda, N., Kobayashi, K., Terashima, Y., Shimada, Y., Suzuki, T., … Hayashi, M. (2005). Evaluation of liver and peripheral blood micronucleus assays with 9 chemicals using young rats. Mutation Research, 583(2), 133–145. https://doi.org/10.1016/j.mrgentox.2005.03.012
  • Swaileh, K.M., Hussein, R., & Ezzughayyar, A. (2008). Evaluating wastewater-induced plant genotoxicity using randomly amplified polymorphic DNA. Environmental Toxicology, 23(1), 117–122. https://doi.org/10.1002/tox.20316
  • Takakura, N., Nesslany, F., Fessard, V., & Le Hegarat, L. (2014). Absence of in vitro genotoxicity potential of the mycotoxin deoxynivalenol in bacteria and in human TK6 and HepaRG cell lines. Food and Chemical Toxicology, 66, 113–121. https://doi.org/10.1016/j.fct.2014.01.029
  • Tatay, E., Espín, S., García-Fernández, A.J., & Ruiz, M.J. (2017). Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 45(3), 334–339. https://doi.org/10.1016/j.tiv.2017.04.026
  • Tatay, E., Font, G., & Ruiz, M.J. (2016). Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells. Food and Chemical Toxicology, 96, 43–49. https://doi.org/10.1016/j.fct.2016.07.027
  • Test No. 473: In vitro Mammalian Chromosome Aberration Test. Retrieved December 6, 2019, from https://www.oecd-ilibrary.org/environment/test-no-473-in-vitro-mammalian-chromosome-aberration-test_9789264071261-en
  • Test No. 474: Mammalian Erythrocyte Micronucleus Test. Retrieved December 6, 2019, from https://www.oecd-ilibrary.org/environment/test-no-474-mammalian-erythrocyte-micronucleus-test_9789264264762-en
  • Test No. 475: Mammalian Bone Marrow Chromosomal Aberration Test. Retrieved December 6, 2019, from https://www.oecd-ilibrary.org/environment/test-no-475-mammalian-bone-marrow-chromosomal-aberration-test_9789264224407-en
  • Test No. 479: Genetic Toxicology: In vitro Sister Chromatid Exchange Assay in Mammalian Cells. Retrieved December 6, 2019, from https://www.oecd-ilibrary.org/environment/test-no-479-genetic-toxicology-in-vitro-sister-chromatid-exchange-assay-in-mammalian-cells_9789264071384-en
  • Theumer, M.G., Cánepa, M.C., López, A.G., Mary, V.S., Dambolena, J.S., & Rubinstein, H.R. (2010). Subchronic mycotoxicoses in Wistar rats: Assessment of the in vivo and in vitro genotoxicity induced by fumonisins and aflatoxin B(1), and oxidative stress biomarkers status. Toxicology, 268(1–2), 104–110. https://doi.org/10.1016/j.tox.2009.12.007
  • Thust, R., & Kneist, S. (1979). Activity of citrinin metabolized by rat and human microsome fractions in clastogenicity and SCE assays on Chinese hamster V79-E cells. Mutation Research, 67(4), 321–330. https://doi.org/10.1016/0165-1218(79)90028-4
  • Thust, R., Kneist, S., & Hühne, V. (1983). Genotoxicity of Fusarium mycotoxins (nivalenol, fusarenon-X, T-2 toxin, and zearalenone) in Chinese hamster V79-E cells in vitro. Archiv Fur Geschwulstforschung, 53(1), 9–15.
  • Tiessen, C., Ellmer, D., Mikula, H., Pahlke, G., Warth, B., Gehrke, H., … Marko, D. (2017). Impact of phase I metabolism on uptake, oxidative stress and genotoxicity of the emerging mycotoxin alternariol and its monomethyl ether in esophageal cells. Archives of Toxicology, 91(3), 1213–1226. https://doi.org/10.1007/s00204-016-1801-0
  • Tiessen, C., Fehr, M., Schwarz, C., Baechler, S., Domnanich, K., Böttler, U., … Marko, D. (2013). Modulation of the cellular redox status by the Alternaria toxins alternariol and alternariol monomethyl ether. Toxicology Letters, 216(1), 23–30. https://doi.org/10.1016/j.toxlet.2012.11.005
  • Tikkanen, L., Matsushima, T., & Natori, S. (1983). Mutagenicity of anthraquinones in the Salmonella preincubation test. Mutation Research, 116(3–4), 297–304. https://doi.org/10.1016/0165-1218(83)90067-8
  • Topaktas, M., & Rencuzogullari, E. (2010). Sitogenetik (Cytogenetic). Ankara, Turkey. Nobel Press.
  • Tsuda, S., Kosaka, Y., Murakami, M., Matsuo, H., Matsusaka, N., Taniguchi, K., & Sasaki, Y.F. (1998). Detection of nivalenol genotoxicity in cultured cells and multiple mouse organs by the alkaline single-cell gel electrophoresis assay. Mutation Research, 415(3), 191–200. https://doi.org/10.1016/s1383-5718(98)00068-0
  • Tucker, J.D., Auletta, A., Cimino, M.C., Dearfield, K.L., Jacobson-Kram, D., Tice, R.R., & Carrano, A.V. (1993). Sister-chromatid exchange: Second report of the Gene-Tox Program. Mutation Research, 297(2), 101–180. https://doi.org/10.1016/0165-1110(93)90001-4
  • Tyson, C.K., & Mirsalis, J.C. (1985). Measurement of unscheduled DNA synthesis in rat kidney cells following in vivo treatment with genotoxic agents. Environmental Mutagenesis, 7(6), 889–899. https://doi.org/10.1002/em.2860070610
  • Uhl, M., Helma, C., & Knasmüller, S. (2000). Evaluation of the single cell gel electrophoresis assay with human hepatoma (Hep G2) cells. Mutation Research, 468(2), 213–225. https://doi.org/10.1016/s1383-5718(00)00051-6
  • Umeda, M., Tsutsui, T., & Saito, M. (1977). Mutagenicity and inducibility of DNA single-strand breaks and chromosome aberrations by various mycotoxins. Gann Japanese Journal of Cancer Research, 68(5), 619–625.
  • Unlu, S., & Saglar, E. (2015). Evaluation of Cytogenetic and Genotoxic Effects of Oxalic Acid by the Alkaline Comet Assay and QRT PCR in Human Buccal Epithelial Cells. Analytical and Quantitative Cytopathology and Histopathology, 37(6), 347–352.
  • Van den Heever, J.P., Thompson, T.S., Curtis, J.M., & Pernal, S.F. (2015). Stability of dicyclohexylamine and fumagillin in honey. Food Chemistry, 179, 152–158. https://doi.org/10.1016/j.foodchem.2015.01.111
  • Van Went, G.F. (1978). Mutagenicity testing of 3 hallucinogens: LSD, psilocybin and delta 9-THC, using the micronucleus test. Experientia, 34(3), 324–325. https://doi.org/10.1007/bf01923013
  • Venier, P., Montini, R., Zordan, M., Clonfero, E., Paleologo, M., & Levis, A.G. (1989). Induction of SOS response in Escherichia coli strain PQ37 by 16 chemical compounds and human urine extracts. Mutagenesis, 4(1), 51–57. https://doi.org/10.1093/mutage/4.1.51
  • Wang, J.C., & Qian, B.L. (1997). Detection of DNA damage in peripheral lymphocytes by 7 compounds using comet assay. Zhongguo Yao Li Xue Bao = Acta Pharmacologica Sinica, 18(5), 451–454.
  • Wangenheim, J., & Bolcsfoldi, G. (1988). Mouse lymphoma L5178Y thymidine kinase locus assay of 50 compounds. Mutagenesis, 3(3), 193–205. https://doi.org/10.1093/mutage/3.3.193
  • Wehner, F.C., Marasas, W.F., & Thiel, P.G. (1978a). Lack of mutagenicity to Salmonella typhimurium of some Fusarium mycotoxins. Applied and Environmental Microbiology, 35(4), 659–662.
  • Wehner, F.C., Thiel, P.G., & Vleggaar, R. (1979). Mutagenicity of 5,6-dimethoxysterigmatocystin, a metabolite from Aspergillus multicolor, in the Salmonella/microsome system. Applied and Environmental Microbiology, 38(5), 1015–1017.
  • Wehner, F.C., Thiel, P.G., van Rensburg, S.J., & Demasius, I.P.C. (1978b). Mutagenicity to Salmonella typhimurium of some Aspergillus and Penicillium mycotoxins. Mutation Research, 58(2), 193–203. https://doi.org/10.1016/0165-1218(78)90009-5
  • Wei, C.I., Huang, T.S., Fernando, S.Y., & Chung, K.T. (1991). Mutagenicity studies of kojic acid. Toxicology Letters, 59(1–3), 213–220. https://doi.org/10.1016/0378-4274(91)90074-g
  • Williams, J.G., Deschl, U., & Williams, G.M. (2011). DNA damage in fetal liver cells of turkey and chicken eggs dosed with aflatoxin B1. Archives of Toxicology, 85(9), 1167–1172. https://doi.org/10.1007/s00204-011-0653-x
  • Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., & Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531–6535. https://doi.org/10.1093/nar/18.22.6531
  • Wilson, W.R., Harris, N.M., & Ferguson, L.R. (1984). Comparison of the mutagenic and clastogenic activity of amsacrine and other DNA-intercalating drugs in cultured V79 Chinese hamster cells. Cancer Research, 44(10), 4420–4431.
  • Wong, J.J., Singh, R., & Hsieh, D.P. (1977). Mutagenicity of fungal metabolites related to aflatoxin biosynthesis. Mutation Research, 44(3), 447–450. https://doi.org/10.1016/0027-5107(77)90102-6
  • Würgler, F.E., Friederich, U., & Schlatter, J. (1991). Lack of mutagenicity of ochratoxin A and B, citrinin, patulin and cnestine in Salmonella typhimurium TA102. Mutation Research, 261(3), 209–216. https://doi.org/10.1016/0165-1218(91)90069-X
  • Xu, J., Whong, W.Z., & Ong, T. (1984). Validation of the Salmonella (SV50)/arabinose-resistant forward mutation assay system with 26 compounds. Mutation Research, 130(2), 79–86. https://doi.org/10.1016/0165-1161(84)90107-9
  • Yamamoto, K.N., Hirota, K., Kono, K., Takeda, S., Sakamuru, S., Xia, M., … Tice, R.R. (2011). Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines. Environmental and Molecular Mutagenesis, 52(7), 547–561. https://doi.org/10.1002/em.20656
  • Yang, T.H., Wu, T.H., Chang, Y.L., Liao, H.T., Hsu, C.C., Tsai, C.Y., & Chou, Y.C. (2018). Cyclosporine for the treatment of lupus nephritis in patients with systemic lupus erythematosus. Clinical Nephrology, 89(4), 277–285. https://doi.org/10.5414/CN109325
  • Yang, W., Yu, M., Fu, J., Bao, W., Wang, D., Hao, L., … Liu, L. (2014). Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes. Food and Chemical Toxicology, 64, 383–396. https://doi.org/10.1016/j.fct.2013.12.012
  • Yen, G.C., Chang, Y.C., Sheu, F., & Chiang, H.C. (2001). Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. Journal of Agricultural and Food Chemistry, 49(3), 1426–1431. https://doi.org/10.1021/jf001109t
  • Yourtee, D.M., & Kirk-Yourtee, C.L. (1986). The mutagenicity of aflatoxin Q1 to Salmonella typhimurium TA 100 with or without rat or human liver microsomal preparations. Research Communications in Chemical Pathology and Pharmacology, 54(1), 101–113.
  • Yuzawa, K., Kondo, I., Fukao, K., Iwasaki, Y., & Hamaguchi, H. (1986). Mutagenicity of cyclosporine. Induction of sister chromatid exchange in human cells. Transplantation, 42(1), 61–63.
  • Zain, M.E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129–144. https://doi.org/10.1016/j.jscs.2010.06.006
  • Zeljezić, D., Domijan, A.M., & Peraica, M. (2006). DNA damage by ochratoxin A in rat kidney assessed by the alkaline comet assay. Brazilian Journal of Medical and Biological Research, 39(12), 1563–1568. https://doi.org/10.1590/s0100-879x2006001200006
  • Zhang, D., Cui, Y., Shen, H., Xing, L., Cui, J., Wang, J., & Zhang, X. (2013). Sterigmatocystin-induced DNA damage triggers G2 arrest via an ATM/p53-related pathway in human gastric epithelium GES-1 cells in vitro. PloS One, 8(5), e65044. https://doi.org/10.1371/journal.pone.0065044
  • Zhang, J., Zheng, N., Liu, J., Li, F.D., Li, S.L., & Wang, J.Q. (2015). Aflatoxin B1 and aflatoxin M1 induced cytotoxicity and DNA damage in differentiated and undifferentiated Caco-2 cells. Food and Chemical Toxicology, 83, 54–60. https://doi.org/10.1016/j.fct.2015.05.020
  • Zhang, X., Jiang, L., Geng, C., Cao, J., & Zhong, L. (2009). The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon, 54(4), 513–518. https://doi.org/10.1016/j.toxicon.2009.05.021
  • Zhang, Y.F., Yang, J.Y., Li, Y.K., & Zhou, W. (2017). Toxicity and oxidative stress induced by T-2 toxin in cultured mouse Leydig cells. Toxicology Mechanisms and Methods, 27(2), 100–106. https://doi.org/10.1080/15376516.2016.1258747
  • Zhang, Z., Fu, J., Yao, B., Zhang, X., Zhao, P., & Zhou, Z. (2011). In vitro genotoxicity of danthron and its potential mechanism. Mutation Research, 722(1), 39–43. https://doi.org/10.1016/j.mrgentox.2011.02.006
  • Zhiyi, R., & Haowen, Y. (2004). A method for genotoxicity detection using random amplified polymorphism DNA with Danio rerio. Ecotoxicology and Environmental Safety, 58(1), 96–103. https://doi.org/10.1016/j.ecoenv.2003.09.016
  • Zhou, S., Jiang, L., Geng, C., Cao, J., & Zhong, L. (2010). Patulin-induced oxidative DNA damage and p53 modulation in HepG2 cells. Toxicon, 55(2), 390–395. https://doi.org/10.1016/j.toxicon.2009.08.019
  • Zurlo, J., Roebuck, B.D., Rutkowski, J.V., Curphey, T.J., & Longnecker, D.S. (1984). Effect of pyridoxal deficiency on pancreatic DNA damage and nodule induction by azaserine. Carcinogenesis, 5(5), 555–558. https://doi.org/10.1093/carcin/5.5.555
  • Zwanenburg, T.S., & Cordier, A. (1994). No cyclosporin-induced chromosomal aberrations in human peripheral blood lymphocytes in vitro. Mutation Research, 320(3), 217–221. https://doi.org/10.1016/0165-1218(94)90048-5
There are 351 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Review Articles
Authors

Muhsin Aydın 0000-0002-1204-1163

Eyyüp Rencüzoğulları This is me 0000-0001-5206-6421

Publication Date December 20, 2019
Submission Date October 15, 2019
Acceptance Date December 11, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Aydın, M., & Rencüzoğulları, E. (2019). Genotoxic and Mutagenic Effects of Mycotoxins: A Review. Commagene Journal of Biology, 3(2), 132-161. https://doi.org/10.31594/commagene.633418