Research Article
BibTex RIS Cite

Tuzluluğun Trichoderma harzianum'un Büyüme, Antagonistik Potansiyeli, Proteaz Aktivitesi ve Prolin İçeriği Üzerindeki Etkisi

Year 2020, Volume: 4 Issue: 1, 62 - 66, 29.06.2020
https://doi.org/10.31594/commagene.738313

Abstract

Sürdürülebilir bitkisel üretimin artması ve faydalı mikroorganizmaların büyümesi için tuzluluk ana sınırlayıcı faktörlerden biridir. Biyokontrol ajanı olan Trichoderma harzianum izolatlarının tuzlu koşullar altında test edilmesi, biyo-priming yoluyla bitkilerdeki tuz stresini hafifletmek için daha uygun suşlar seçmek gereklidir. Bu çalışmada, 14 T. harzianum izolatının Macrophomina phaseolina’ ya karşı antagonistik kapasitesinin yanı sıra büyüme, proteaz aktivitesi ve prolin içeriği farklı tuz konsantrasyonları altında araştırıldı. Th15 ve Th18 dışındaki tüm izolatlar, ikili kültür analizinde 0 mM NaCl'de M. phaseolina'ya karşı % 85'in üzerinde bir inhibisyon sergiledi ve tuz konsantrasyonu arttıkça antagonistik kapasitelerinde belirgin bir düşüş gösterdi. Test edilen tüm izolatlarda artan tuz konsantrasyonlarına bağlı olarak koloni büyümelerinde istatistiksel açıdan anlamlı azalmalar gözlemlendi. Tüm izolatların 0 mM'deki büyümesi, 70 mM NaCl hariç diğer NaCl uygulamalarında büyük ölçüde daha fazlaydı. Artan tuz seviyesi ile proteaz aktivitesi de azalmıştır. İzolatlar, prolin içeriğinde olduğu gibi aynı tuzlulukta bile farklı miktarlarda proteaz üretimi gösterdiler. Proteaz enziminin aksine, prolin içeriği 240 mM NaCl'de önemli ölçüde artmıştır. Tuzluluk, T. harzianum izolatlarında büyüme, antagonistik kapasitesi, proteaz aktivitesi ve prolin içeriği bakımından önemli bir rol oynamıştır.

References

  • Ahmad, P., Hashem, A., Alqarawi, A., John, R., Egamberdieva, D., & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 6, 868. https://doi.org/10.3389/fpls.2015.00868
  • Amaresan, N. (2016). Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal of Basic Microbiology, 57, 141-150. https://doi.org/10.1002/jobm.201600369
  • Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Etebarian, H.R. (2006). Evaluation of Trichoderma isolates for biological control of charcoal stem rot in Melon caused by Macrophomina phaseolina. Journal of Agricultural Science, 8, 243-250. https://doi.org/10.1080/13102818.2016.1147334
  • Gajera, H.P., & Vakharia, D.N. (2012). Production of lytic enzymes by Trichoderma isolates during in vitro antagonism with Aspergillus niger, the causal agent of collar rot of peanut. Brazilian Journal of Microbiology, 43, 43-52. http://dx.doi.org/10.1590/S1517-83822012000100005
  • Haab, D., Hagspiel, K., Szakmary, K., & Kubicek, C.P. (1990). Formation of the extracellular proteases from Trichoderma reesei QM 9414 involved in cellulase degradation. Journal of Biotechnology, 16, 187-198. https://doi.org/10.1016/0168-1656(90)90035-A
  • Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. https://doi.org/10.4161/psb.21949
  • Kashyap, P.L., Solanki, M.K., Kushwaha, P., Kumar, S., & Srivastava, A.K. (2020). Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment. Journal of Soil Science and Plant Nutrition, 20, 160-176.
  • Khalili, E., Javed, M.A., Huyop, F., Rayatpanah, S., Jamshidi, S., & Wahab, R.A. (2016). Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnology and Biotechnological Equipment, 30, 479-488. https://doi.org/10.1080/13102818.2016.1147334
  • Kidwai, M.K., & Nehra, M. (2017). Biotechnological Applications of Trichoderma Species for Environmental and Food Security. In Gahlawat S., Salar R., Siwach P., Duhan J., Kumar S., & Kaur P. (Eds.), Plant Biotechnology: Recent Advancements and Developments (pp. 125-156). Singapore, Springer press.
  • Kredics, L., Antal, Z., & Manczinger, L. (2000). Influence of water potential on growth, enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures. Current Microbiology, 40, 310-314. https://doi.org/10.1007/s002849910062
  • Kredics, L., Antal, Z., Szekeres, A., Hatvani, L., Manczinger, L., … & Nagy, E. (2005). Extracellular proteases of Trichoderma species. Acta Microbiologica et Immunologica Hungarica, 52, 169-184.
  • Kucuk, C., & Kivanc, M. (2003). Isolation of Trichoderma spp. and determination of their antifungal, biochemical and physiological features. Turkish Journal of Biology, 27, 247-253.
  • Marco, J.L.D., Valadares-Inglis, M.C., & Felix, C.R. (2003). Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches' broom of cocoa. Brazilian Journal of Microbiology, 34, 33-38. http://dx.doi.org/10.1590/S1517-83822003000100008
  • Markovich, N.A., & Kononova, G.L. (2003). Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: A review. Applied Biochemistry and Microbiology, 39, 341-351. https://doi.org/10.1023/A:1024502431592
  • Mona, S.A., Hashem, A., Abd_Allah, E.F., Alqarawi, A.A., Soliman, D.W.K., …& Egamberdieva, D. (2017). Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture, 16, 1751-1757. https://doi.org/10.1016/S2095-3119(17)61695-2
  • Rawat, L., Bisht, T., Upadhayay, R., & Kukreti, A. (2016). Trichoderma harzianum enhancing plant growth parameters and reducing deleterious effects of natural saline-sodic soil in Rice. National Academy of Agricultural Science, 34(6), 1855-1867
  • Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2011). Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil, 347, 387. https://doi.org/10.1007/s11104-011-0858-z
  • Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2013). Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f.sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Archives of Phytopathology and Plant Protection, 46, 1442-1467. https://doi.org/10.1080/03235408.2013.769316
  • Sambrook, J., Fritsch, E.F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press.
  • Singh, N., Pandey, P., Dubey, R.C., & Maheshwari, D.K. (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 24, 1669-1679. https://doi.org/10.1007/s11274-008-9680-z
  • Vinale, F., Sivasithamparam, K., Ghisalberti, E., Marra, R., Woo, S., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40, 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
  • Yasmeen, R., & Siddiqui, Z.S. (2017). Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Botanica Croatica, 76(2), 154-162. https://doi.org/10.1515/botcro-2016-0054
  • Zhifang, G., & Loescher, W.H. (2003). Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant, Cell and Environment, 26, 275-283. https://doi.org/10.1046/j.1365-3040.2003.00958.x

The Effect of Salinity on Growth, Antagonistic Potential, Protease Activity, and Proline Content of Trichoderma harzianum

Year 2020, Volume: 4 Issue: 1, 62 - 66, 29.06.2020
https://doi.org/10.31594/commagene.738313

Abstract

Salinity is one of the major limiting factors for sustainable crop production and the growth of beneficial microorganisms. Screening of biocontrol agent Trichoderma harzianum isolates under saline conditions could be necessary to select more efficient strains to alleviate salt stress through biopriming in plants. The present study aimed to investigate the antagonistic capacity of 14 T. harzianum isolates against Macrophomina phaseolina as well as the growth, protease activity, and proline content under different concentrations of salt. All isolates except Th15 and Th18 exhibited an over 85% inhibition against M. phaseolina at 0 mM NaCl in c and showed a noticeable decline in their antagonistic capacity as salt concentration increased. Colony growth decreased with increasing salt concentrations in all isolates tested. The growth of all isolates at 0 mM was significantly higher than the other NaCl treatments except at 70 mM NaCl. Protease activity also declined with the increased level of salt. Isolates displayed a wide range of protease expression patterns even at the same salinity as in the case of proline content. Unlike protease enzyme, proline content significantly increased at 240 mM NaCl. Salinity played a significant role in T. harzianum isolates with regards to the growth, antagonistic capacity, protease activity, and proline content.

References

  • Ahmad, P., Hashem, A., Alqarawi, A., John, R., Egamberdieva, D., & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 6, 868. https://doi.org/10.3389/fpls.2015.00868
  • Amaresan, N. (2016). Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal of Basic Microbiology, 57, 141-150. https://doi.org/10.1002/jobm.201600369
  • Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Etebarian, H.R. (2006). Evaluation of Trichoderma isolates for biological control of charcoal stem rot in Melon caused by Macrophomina phaseolina. Journal of Agricultural Science, 8, 243-250. https://doi.org/10.1080/13102818.2016.1147334
  • Gajera, H.P., & Vakharia, D.N. (2012). Production of lytic enzymes by Trichoderma isolates during in vitro antagonism with Aspergillus niger, the causal agent of collar rot of peanut. Brazilian Journal of Microbiology, 43, 43-52. http://dx.doi.org/10.1590/S1517-83822012000100005
  • Haab, D., Hagspiel, K., Szakmary, K., & Kubicek, C.P. (1990). Formation of the extracellular proteases from Trichoderma reesei QM 9414 involved in cellulase degradation. Journal of Biotechnology, 16, 187-198. https://doi.org/10.1016/0168-1656(90)90035-A
  • Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. https://doi.org/10.4161/psb.21949
  • Kashyap, P.L., Solanki, M.K., Kushwaha, P., Kumar, S., & Srivastava, A.K. (2020). Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment. Journal of Soil Science and Plant Nutrition, 20, 160-176.
  • Khalili, E., Javed, M.A., Huyop, F., Rayatpanah, S., Jamshidi, S., & Wahab, R.A. (2016). Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnology and Biotechnological Equipment, 30, 479-488. https://doi.org/10.1080/13102818.2016.1147334
  • Kidwai, M.K., & Nehra, M. (2017). Biotechnological Applications of Trichoderma Species for Environmental and Food Security. In Gahlawat S., Salar R., Siwach P., Duhan J., Kumar S., & Kaur P. (Eds.), Plant Biotechnology: Recent Advancements and Developments (pp. 125-156). Singapore, Springer press.
  • Kredics, L., Antal, Z., & Manczinger, L. (2000). Influence of water potential on growth, enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures. Current Microbiology, 40, 310-314. https://doi.org/10.1007/s002849910062
  • Kredics, L., Antal, Z., Szekeres, A., Hatvani, L., Manczinger, L., … & Nagy, E. (2005). Extracellular proteases of Trichoderma species. Acta Microbiologica et Immunologica Hungarica, 52, 169-184.
  • Kucuk, C., & Kivanc, M. (2003). Isolation of Trichoderma spp. and determination of their antifungal, biochemical and physiological features. Turkish Journal of Biology, 27, 247-253.
  • Marco, J.L.D., Valadares-Inglis, M.C., & Felix, C.R. (2003). Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches' broom of cocoa. Brazilian Journal of Microbiology, 34, 33-38. http://dx.doi.org/10.1590/S1517-83822003000100008
  • Markovich, N.A., & Kononova, G.L. (2003). Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: A review. Applied Biochemistry and Microbiology, 39, 341-351. https://doi.org/10.1023/A:1024502431592
  • Mona, S.A., Hashem, A., Abd_Allah, E.F., Alqarawi, A.A., Soliman, D.W.K., …& Egamberdieva, D. (2017). Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture, 16, 1751-1757. https://doi.org/10.1016/S2095-3119(17)61695-2
  • Rawat, L., Bisht, T., Upadhayay, R., & Kukreti, A. (2016). Trichoderma harzianum enhancing plant growth parameters and reducing deleterious effects of natural saline-sodic soil in Rice. National Academy of Agricultural Science, 34(6), 1855-1867
  • Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2011). Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil, 347, 387. https://doi.org/10.1007/s11104-011-0858-z
  • Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2013). Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f.sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Archives of Phytopathology and Plant Protection, 46, 1442-1467. https://doi.org/10.1080/03235408.2013.769316
  • Sambrook, J., Fritsch, E.F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press.
  • Singh, N., Pandey, P., Dubey, R.C., & Maheshwari, D.K. (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 24, 1669-1679. https://doi.org/10.1007/s11274-008-9680-z
  • Vinale, F., Sivasithamparam, K., Ghisalberti, E., Marra, R., Woo, S., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40, 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
  • Yasmeen, R., & Siddiqui, Z.S. (2017). Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Botanica Croatica, 76(2), 154-162. https://doi.org/10.1515/botcro-2016-0054
  • Zhifang, G., & Loescher, W.H. (2003). Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant, Cell and Environment, 26, 275-283. https://doi.org/10.1046/j.1365-3040.2003.00958.x
There are 25 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Sedat Çam 0000-0001-9030-6713

Çiğdem Küçük 0000-0001-5688-5440

Publication Date June 29, 2020
Submission Date May 16, 2020
Acceptance Date June 16, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Çam, S., & Küçük, Ç. (2020). The Effect of Salinity on Growth, Antagonistic Potential, Protease Activity, and Proline Content of Trichoderma harzianum. Commagene Journal of Biology, 4(1), 62-66. https://doi.org/10.31594/commagene.738313