Research Article
BibTex RIS Cite

The Effect of Methylparaben on Development and Fecundity of Drosophila melanogaster

Year 2021, Volume: 5 Issue: 2, 177 - 181, 31.12.2021
https://doi.org/10.31594/commagene.1019502

Abstract

Parabens are a group of chemicals used as preservatives in many industrial products such as foods, cosmetics, and pharmaceuticals. Recent studies have revealed that these chemicals have endocrine disrupting properties. Drosophila melanogaster is one of the suitable model organisms used to test the toxic effect of various chemicals in vivo. In this study, the effects of methylparaben (MP) (50 mM, 100 mM, and 200 mM), one of the most commonly used parabens, on the developmental parameters and fecundity of D. melanogaster were examined. No significant difference was observed in the viability rates from larva to pupa and from pupa to adult. However, experimented MP concentrations caused a delay in larva to pupa and pupa to adult developmental times (p<0.05). While MP did not cause a significant change in mean offspring number, it significantly decreased fecundity at all doses (p<0.05).

Supporting Institution

Nevşehir Haci Bektas Veli University, Scientific Research Projects Coordination Unit

Project Number

NEÜBAP16F36

Thanks

The author thanks Nevşehir Hacı Bektaş Veli University Scientific Research Projects Coordination Unit [Grant number: NEÜBAP16F36] for financial support and Kurtuluş ATLI for laboratory assistance.

References

  • Ashburner, M., Golic, K., & Hawley, R.S. (2011). Drosophila a laboratory handbook. New York, Cold Harbor Spring Laboratory Press, 1440pp.
  • Ayar, A. & Uysal, H. (2013). Genotoxic and safety assessment of 2 parabens in somatic cells of in vivo Drosophila melanogaster. Turkish Journal of Biology, 37, 683-688. https://doi.org/10.3906/biy-1303-60
  • Boberg, J., Taxvig, C., Christiansen, S., & Hass, U. (2010). Possible endocrine disrupting effects of parabens and their metabolites. Reproductive Toxicology (Elmsford, N.Y.), 30(2), 301–312. https://doi.org/10.1016/j.reprotox.2010.03.011
  • Chen, Q., Pan, C., Li, Y., Zhang, M., & Gu, W. (2016). The Combined Effect of Methyl- and Ethyl-Paraben on Lifespan and Preadult Development Period of Drosophila melanogaster (Diptera: Drosophilidae). Journal of Insect Science, 16(1), 15. https://doi.org/10.1093/jisesa/iev146
  • Gáliková, M., Klepsatel, P., Senti, G., & Flatt, T. (2011). Steroid hormone regulation of C. elegans and Drosophila aging and life history. Experimental Gerontology, 46(2-3), 141–147. https://doi.org/10.1016/j.exger.2010.08.021
  • Gao, L., Li, Y., Xie, H., Wang, Y., Zhao, H., Zhang, M., & Gu, W. (2020). Effect of ethylparaben on the growth and development of Drosophila melanogaster on preadult. Environmental Toxicology and Pharmacology, 80, 103495. https://doi.org/10.1016/j.etap.2020.103495
  • Gomez, E., Pillon, A., Fenet, H., Rosain, D., Duchesne, M.J., Nicolas, J.C., Balaguer, P., & Casellas, C. (2005). Estrogenic activity of cosmetic components in reporter cell lines: parabens, UV screens, and musks. Journal of Toxicology and Environmental Health Part A, 68(4), 239-251. https://doi.org/10.1080/15287390590895054
  • Gu, W., Xie, D.J., & Hou, X.W. (2009). Toxicity and estrogen effects of methylparaben on Drosophila melanogaster. Food Science, 30(1), 252-254.
  • Herrero, Ó., Planelló, R., & Morcillo, G. (2015). The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. Chemosphere ,128, 266-277. https://doi.org/10.1016/j.chemosphere.2015.01.059
  • Kozlova, T., & Thummel, C.S. (2000). Steroid regulation of postembryonic development and reproduction in Drosophila. Trends in Endocrinology and Metabolism: TEM, 11(7), 276–280. https://doi.org/10.1016/s1043-2760(00)00282-4
  • Li, Y., Hou, X., Zhang, M., & Gu, W. (2015). Effects of propylparaben on fecundity and lifespan in Drosophila melanogaster. Toxicological & Environmental Chemistry, 96(7), 1064-1074. https://doi.org/10.1080/02772248.2015.1005091
  • Liu, T., Li, Y., Zhao, X., Zhang, M., & Gu, W. (2014). Ethylparaben affects lifespan, fecundity, and the expression levels of ERR, EcR and YPR in Drosophila melanogaster. Journal of Insect Physiology, 71, 1-7. https://doi.org/10.1016/j.jinsphys.2014.09.008
  • Obata, T., & Kubota, S. (2000). Formation of hydroxyl radicals by environmental estrogen-like chemicals in rat striatum. Neuroscience Letters, 296(1), 41–44. https://doi.org/10.1016/s0304-3940(00)01619-0
  • Pop, A., Kiss, B., Vlase, L., Pop, D.S., Iepure, R., Paltinean, R., & Loghin, F. (2011). Study of oxidative stress induction after exposure to bisphenol A and methylparaben in rats. Farmacia, 59, 539-49. https://doi.org/10.1016/j.toxlet.2011.05.768
  • Rauschenbach, I.Y., Sukhanova, M.Z., Hirashima, A., Sutsugu, E., & Kuano, E. (2000). Role of ecdysteroid system in the regulation of Drosophila reproduction under environmental stress. Doklady Biological Science, 375, 641-643. https://doi.org/10.1023/a:1026610425973
  • Riad, M.A., Abd-Rabo, M.M., Abd El Aziz, S.A., El Behairy, A.M., & Badawy, M.M. (2018). Reproductive toxic impact of subchronic treatment with combined butylparaben and triclosan in weanling male rats. Journal of Biochemical and Molecular Toxicology, 32(3), e22037. https://doi.org/10.1002/jbt.22037
  • Roy, D., Palangat, M., Chen, C.W., Thomas, R.D., Colerangle, J., Atkinson, A., & Yan, Z.J. (1997). Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicals. Journal of Toxicology and Environmental Health, 50(1), 1–29. https://doi.org/10.1080/009841097160573
  • Routledge, E.J., Parker, J., Odum, J., Ashby, J., & Sumpter, J.P. (1998). Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicology and Applied Pharmacology, 153(1), 12–19. https://doi.org/10.1006/taap.1998.8544
  • Samarasinghe, S., Krishnan, K., Naidu, R., Megharaj, M., Miller, K., Fraser, B., & Aitken, R.J. (2018). Parabens generate reactive oxygen species in human spermatozoa. Andrology, 6(4), 532–541. https://doi.org/10.1111/andr.12499
  • Soller, M., Bownes, M., & Kubli, E. (1999). Control of oocyte maturation in sexually mature Drosophila females. Developmental Biology, 208(2), 337–351. https://doi.org/10.1006/dbio.1999.9210
  • Soni, M.G., Carabin, I.G., & Burdock, G.A. (2005). Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food and Chemical Toxicology, 43(7), 985–1015. https://doi.org/10.1016/j.fct.2005.01.020
  • Tavares, R.S., Martins, F.C., Oliveira, P.J., Ramalho-Santos, J., & Peixoto, F.P. (2009). Parabens in male infertility-is there a mitochondrial connection?. Reproductive Toxicology (Elmsford, N.Y.), 27(1), 1–7. https://doi.org/10.1016/j.reprotox.2008.10.002
  • Vo, T.T., Yoo, Y.M., Choi, K.C., & Jeung, E.B. (2010). Potential estrogenic effect(s) of parabens at the prepubertal stage of a postnatal female rat model. Reproductive Toxicology (Elmsford, N.Y.), 29(3), 306–316. https://doi.org/10.1016/j.reprotox.2010.01.013
  • Watts, M.M., Pascoe, D., & Carroll, K. (2001). Chronic exposure to 17 alpha-ethinylestradiol and bisphenol A-effects on development and reproduction in the freshwater invertebrate Chironomus riparius (Diptera: Chironomidae). Aquatic Toxicology, 55(1-2), 113–124. https://doi.org/10.1016/s0166-445x(01)00148-5
  • Zhang, Z., Sun, L., Hu, Y., Jiao, J., & Hu, J. (2013). Inverse antagonist activities of parabens on human oestrogen-related receptor γ (ERRγ): in vitro and in silico studies. Toxicology and Applied Pharmacology, 270(1), 16–22. https://doi.org/10.1016/j.taap.2013.03.030
  • Zou, E., & Fingerman, M. (1997). Effects of estrogenic xenobiotics on molting of the water flea, Daphnia magna. Ecotoxicology and Environmental Safety, 38(3), 281–285. https://doi.org/10.1006/eesa.1997.1589

Metilparabenin Drosophila melanogaster’in Gelişimi ve Fekunditesi Üzerine Etkileri

Year 2021, Volume: 5 Issue: 2, 177 - 181, 31.12.2021
https://doi.org/10.31594/commagene.1019502

Abstract

Parabenler; gıdalar, kozmetik ürünler ve ilaçlar gibi birçok endüstriyel üründe koruyucu olarak kullanılan bir kimyasal madde grubudur. Son yıllarda yapılan çalışmalar, bu kimyasalların endokrin bozucu özelliği olduğunu ortaya koymuştur. Drosophila melanogaster çeşitli kimyasalların toksik etkisini in vivo olarak test etmek için kullanılan uygun model organizmalardan biridir. Bu çalışmada, en sık kullanılan parabenlerden biri olan metilparabenin (MP) (50 mM, 100 mM ve 200 mM) D. melanogaster'in gelişimi ve fekunditesi üzerine etkileri incelenmiştir. Pupalaşma ve erginleşme yüzdelerinde anlamlı bir fark gözlenmemiştir. Fakat MP uygulaması pupalaşma ve erginleşme sürelerinde gecikmeye yol açmıştır (p<0.05). MP ortalama yavru döl sayısında anlamlı bir değişime yol açmazken, tüm dozlarda fekunditeyi önemli ölçüde azaltmıştır (p<0.05).

Project Number

NEÜBAP16F36

References

  • Ashburner, M., Golic, K., & Hawley, R.S. (2011). Drosophila a laboratory handbook. New York, Cold Harbor Spring Laboratory Press, 1440pp.
  • Ayar, A. & Uysal, H. (2013). Genotoxic and safety assessment of 2 parabens in somatic cells of in vivo Drosophila melanogaster. Turkish Journal of Biology, 37, 683-688. https://doi.org/10.3906/biy-1303-60
  • Boberg, J., Taxvig, C., Christiansen, S., & Hass, U. (2010). Possible endocrine disrupting effects of parabens and their metabolites. Reproductive Toxicology (Elmsford, N.Y.), 30(2), 301–312. https://doi.org/10.1016/j.reprotox.2010.03.011
  • Chen, Q., Pan, C., Li, Y., Zhang, M., & Gu, W. (2016). The Combined Effect of Methyl- and Ethyl-Paraben on Lifespan and Preadult Development Period of Drosophila melanogaster (Diptera: Drosophilidae). Journal of Insect Science, 16(1), 15. https://doi.org/10.1093/jisesa/iev146
  • Gáliková, M., Klepsatel, P., Senti, G., & Flatt, T. (2011). Steroid hormone regulation of C. elegans and Drosophila aging and life history. Experimental Gerontology, 46(2-3), 141–147. https://doi.org/10.1016/j.exger.2010.08.021
  • Gao, L., Li, Y., Xie, H., Wang, Y., Zhao, H., Zhang, M., & Gu, W. (2020). Effect of ethylparaben on the growth and development of Drosophila melanogaster on preadult. Environmental Toxicology and Pharmacology, 80, 103495. https://doi.org/10.1016/j.etap.2020.103495
  • Gomez, E., Pillon, A., Fenet, H., Rosain, D., Duchesne, M.J., Nicolas, J.C., Balaguer, P., & Casellas, C. (2005). Estrogenic activity of cosmetic components in reporter cell lines: parabens, UV screens, and musks. Journal of Toxicology and Environmental Health Part A, 68(4), 239-251. https://doi.org/10.1080/15287390590895054
  • Gu, W., Xie, D.J., & Hou, X.W. (2009). Toxicity and estrogen effects of methylparaben on Drosophila melanogaster. Food Science, 30(1), 252-254.
  • Herrero, Ó., Planelló, R., & Morcillo, G. (2015). The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. Chemosphere ,128, 266-277. https://doi.org/10.1016/j.chemosphere.2015.01.059
  • Kozlova, T., & Thummel, C.S. (2000). Steroid regulation of postembryonic development and reproduction in Drosophila. Trends in Endocrinology and Metabolism: TEM, 11(7), 276–280. https://doi.org/10.1016/s1043-2760(00)00282-4
  • Li, Y., Hou, X., Zhang, M., & Gu, W. (2015). Effects of propylparaben on fecundity and lifespan in Drosophila melanogaster. Toxicological & Environmental Chemistry, 96(7), 1064-1074. https://doi.org/10.1080/02772248.2015.1005091
  • Liu, T., Li, Y., Zhao, X., Zhang, M., & Gu, W. (2014). Ethylparaben affects lifespan, fecundity, and the expression levels of ERR, EcR and YPR in Drosophila melanogaster. Journal of Insect Physiology, 71, 1-7. https://doi.org/10.1016/j.jinsphys.2014.09.008
  • Obata, T., & Kubota, S. (2000). Formation of hydroxyl radicals by environmental estrogen-like chemicals in rat striatum. Neuroscience Letters, 296(1), 41–44. https://doi.org/10.1016/s0304-3940(00)01619-0
  • Pop, A., Kiss, B., Vlase, L., Pop, D.S., Iepure, R., Paltinean, R., & Loghin, F. (2011). Study of oxidative stress induction after exposure to bisphenol A and methylparaben in rats. Farmacia, 59, 539-49. https://doi.org/10.1016/j.toxlet.2011.05.768
  • Rauschenbach, I.Y., Sukhanova, M.Z., Hirashima, A., Sutsugu, E., & Kuano, E. (2000). Role of ecdysteroid system in the regulation of Drosophila reproduction under environmental stress. Doklady Biological Science, 375, 641-643. https://doi.org/10.1023/a:1026610425973
  • Riad, M.A., Abd-Rabo, M.M., Abd El Aziz, S.A., El Behairy, A.M., & Badawy, M.M. (2018). Reproductive toxic impact of subchronic treatment with combined butylparaben and triclosan in weanling male rats. Journal of Biochemical and Molecular Toxicology, 32(3), e22037. https://doi.org/10.1002/jbt.22037
  • Roy, D., Palangat, M., Chen, C.W., Thomas, R.D., Colerangle, J., Atkinson, A., & Yan, Z.J. (1997). Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicals. Journal of Toxicology and Environmental Health, 50(1), 1–29. https://doi.org/10.1080/009841097160573
  • Routledge, E.J., Parker, J., Odum, J., Ashby, J., & Sumpter, J.P. (1998). Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicology and Applied Pharmacology, 153(1), 12–19. https://doi.org/10.1006/taap.1998.8544
  • Samarasinghe, S., Krishnan, K., Naidu, R., Megharaj, M., Miller, K., Fraser, B., & Aitken, R.J. (2018). Parabens generate reactive oxygen species in human spermatozoa. Andrology, 6(4), 532–541. https://doi.org/10.1111/andr.12499
  • Soller, M., Bownes, M., & Kubli, E. (1999). Control of oocyte maturation in sexually mature Drosophila females. Developmental Biology, 208(2), 337–351. https://doi.org/10.1006/dbio.1999.9210
  • Soni, M.G., Carabin, I.G., & Burdock, G.A. (2005). Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food and Chemical Toxicology, 43(7), 985–1015. https://doi.org/10.1016/j.fct.2005.01.020
  • Tavares, R.S., Martins, F.C., Oliveira, P.J., Ramalho-Santos, J., & Peixoto, F.P. (2009). Parabens in male infertility-is there a mitochondrial connection?. Reproductive Toxicology (Elmsford, N.Y.), 27(1), 1–7. https://doi.org/10.1016/j.reprotox.2008.10.002
  • Vo, T.T., Yoo, Y.M., Choi, K.C., & Jeung, E.B. (2010). Potential estrogenic effect(s) of parabens at the prepubertal stage of a postnatal female rat model. Reproductive Toxicology (Elmsford, N.Y.), 29(3), 306–316. https://doi.org/10.1016/j.reprotox.2010.01.013
  • Watts, M.M., Pascoe, D., & Carroll, K. (2001). Chronic exposure to 17 alpha-ethinylestradiol and bisphenol A-effects on development and reproduction in the freshwater invertebrate Chironomus riparius (Diptera: Chironomidae). Aquatic Toxicology, 55(1-2), 113–124. https://doi.org/10.1016/s0166-445x(01)00148-5
  • Zhang, Z., Sun, L., Hu, Y., Jiao, J., & Hu, J. (2013). Inverse antagonist activities of parabens on human oestrogen-related receptor γ (ERRγ): in vitro and in silico studies. Toxicology and Applied Pharmacology, 270(1), 16–22. https://doi.org/10.1016/j.taap.2013.03.030
  • Zou, E., & Fingerman, M. (1997). Effects of estrogenic xenobiotics on molting of the water flea, Daphnia magna. Ecotoxicology and Environmental Safety, 38(3), 281–285. https://doi.org/10.1006/eesa.1997.1589
There are 26 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Emel Atlı 0000-0002-0220-546X

Project Number NEÜBAP16F36
Publication Date December 31, 2021
Submission Date November 5, 2021
Acceptance Date December 7, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Atlı, E. (2021). The Effect of Methylparaben on Development and Fecundity of Drosophila melanogaster. Commagene Journal of Biology, 5(2), 177-181. https://doi.org/10.31594/commagene.1019502