Research Article
BibTex RIS Cite

Dye Removing with Dry and Wet Forms of Pure Bacterial Cellulose Produced by Gluconacetobacter xylinus

Year 2022, Volume: 6 Issue: 1, 1 - 5, 30.06.2022
https://doi.org/10.31594/commagene.1037538

Abstract

Bacterial cellulose is being used in the different areas. One of these areas is using this material as bioadsorbent for decolorization of the different dyes. In the study, Gluconacetobacter xylinus was used for obtaining bacterial cellulose (BC). The wet and dry forms of the BC were utilized as bioadsorbent for removal of the Reactive Blue 171 (C.I Chrocion Blue HERD) (200 mg/L), Remazol Brilliant Blue R (150 mg/L) (C. I Reactive Blue 19), and Chrocion Green H-E4BD (100 mg/L) dyes. The highest decolorization rates were obtained with wet BC at the first use as 51%, 52% and 54% for CBHERD, RBBR and CH GREEN dyes after 24 hours of incubation at 30°C, 150 rpm, respectively. These values were 11%, 21% and 20% for dry forms of BC at the end of the first use. At the same time, the structure and morphology of bacterial cellulose were determined by SEM, XRD and FTIR analysis.

Supporting Institution

INONU UNIVERSITY

Project Number

FBA-2019-1797

Thanks

This study was supported by Inonu University Scientific Research Projects Coordination Unit (Grant No: FBA-2019-1797).

References

  • Anbia, M., Hariri, S.A., & Ashrafizadeh, S.N. (2010). Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3. Applied Surface Science, 256(10), 3228–3233. https://doi.org/10.1016/j.apsusc.2009.12.010
  • Brown, R.M., Saxena, I.M., & Kudlicka, K. (1996). Cellulose biosynthesis in higher plants. Trends in Plants Science, 5(1), 149-156. http://doi.org/10.1016/S1360-1385(96)80050-1
  • Georgouvelas, D., Abdelhamid, H.N., Li, J., Edlund, U., & Mathew, A.P. (2021). All-cellulose functional membranes for water treatment: Adsorption of metal ions and catalytic decolorization of dyes. Carbohydrate Polymers, 264, 1-10. http://doi.org/10.1016/j.carbpol.2021.118044
  • Gromet-Elhanan, Z., & Hestrin, S. (1963). Synthesis of cellulose by Acetobacter xylinum VI. Growth on citric acid-cycle intermediates. Journal of Bacteriology, 85(2), 284-292. http://doi.org/10.1128/jb.85.2.284-292.1963
  • Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum 2. preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345-352. http://doi.org/10.1042/bj0580345
  • Karahan, A.G., Akoğlu, A., Çakır, İ., Kart, A., Çakmakçı, M.L., Uygun, A., & Göktepe, F. (2011). Some properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from turkish vinegar. Journal of Applied Polymer Science, 121(3), 1823-1831. http://doi.org/10.1002/app.33818
  • Keshk, S.M.A.S., Razek, T.M.A., & Sameshima, K. (2006). Bacterial cellulose production from beet molasses. African Journal of Biotechnology, 5(17), 1519-1523.
  • Kim, J.H., Park, S., Kim, H., Kim, H.J., Yang, Y.H., Kim, Y.H., …. & Lee, S.H. (2017). Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization. Carbohydrate Polymers, 157, 137–145. https://doi.org/10.1016/j.carbpol.2016.09.074
  • Leal, A.N.R., Lima, A.C.A., Azevedo, M.G.F.A., Santos, D.K.D.N., Zaidan, L.E.M.C., Lima, V.F., & Filho, I.J.C. (2021). Removal of Remazol Black B dye using bacterial cellulose as an adsorbent. Scientia Plena, 17, 3, 034201. http://doi.org/10.14808/sci.plena.2021.034201
  • Lin, W.C., Lien, C.C., Yeh, H.J., Yu, C.M., & Hsu, S.H. (2013). Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydrate Polymers, 94, 603– 611. https://doi.org/10.1016/j.carbpol.2013.01.076
  • Mohite, B.V., & Patil, S.V. (2014). A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry, 61(2), 101-110. http://doi.org/10.1002/bab.1148
  • Rainert, K.T., Nunes, H.C.A., Gonçalves, M.J., Helm, C.V., & Tavares, L.B.B. (2021). Decolorization of the synthetic dye Remazol Brilliant Blue Reactive (RBBR) by Ganoderma lucidum on bio-adsorbent of the solid bleached sulfate paperboard coated with polyethylene terephthalate. Journal of Environmental Chemical Engineering, 9(2), 1-9. http://doi.org/10.1016/j.jece.2020.104990
  • Ross, P., Mayer, R., & Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55(1), 35-58. http://doi.org/10.1128/mr.55.1.35-58.1991
  • Ruka, D.R., Simon, G.P., & Dean, K.M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydrate Polymers, 89, 613–622. https://doi.org/10.1016/j.carbpol.2012.03.059
  • Shoda, M., & Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 10(1), 1-8. http://doi.org/10.1007/BF02931175
  • Ullah, H., Santos, H.A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23, 2291–2314. http://doi.org/10.1007/s10570-016-0986-y
  • Vyjayanthi, J.P., & Suresh, S. (2010). Decolorization of drimarene red dye using palladized bacterial cellulose in a reactor. Water Environment Research, 82(7), 601-609. http://doi.org/10.2175/106143009x12529484816114
  • Yamada, Y., Yukphan, P., Vu, H.T.L., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., & Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58, 397-404. http://doi.org/10.2323/jgam.58.397
  • Yim, S.M., Song, J.E., & Kim, H.R. (2017). Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, 59, 26–36. https://doi.org/10.1016/j.procbio.2016.07.001
  • Birben, M. (2019). Investigation on the use of microbial cellulose for dye decolorization. Master of Science, Department of Biology, Hacettepe University. Retrieved from: http://www.openaccess.hacettepe.edu.tr:8080/xmlui/bitstream/handle/11655/9389/10268015.pdf?sequence=1&isAllowed=y

Gluconacetobacter xylinus Tarafından Üretilen Saf Bakteriyel Selülozun Kuru ve Yaş Formları ile Boya Uzaklaştırılması

Year 2022, Volume: 6 Issue: 1, 1 - 5, 30.06.2022
https://doi.org/10.31594/commagene.1037538

Abstract

Bakteriyel selüloz farklı alanlarda kullanılmaktadır. Bu alanlardan biri, bu malzemeyi farklı boyaların renklerinin giderimi için biyoadsorban olarak kullanmaktır. Çalışmada, bakteriyel selüloz (BS) elde etmek için Gluconacetobacter xylinus kullanılmıştır. BS'nin yaş ve kuru formları, Reaktif Mavi 171 (CI Chrocion Mavi HERD) (200 mg/L), Remazol Parlak Mavi R' nin (150 mg/L) (C. I Reaktif Mavi 19) ve Chrocion Yeşil H-E4BD (100 mg/L) boyalarının uzaklaştırılması için biyoadsorban olarak kullanıldı. En yüksek renk giderme oranları, ilk kullanımda yaş BC ile 30°C, 150 rpm'de 24 saat inkübasyondan sonra CBHERD, RBBR ve CH Yeşil boyaları için sırasıyla %51, %52 ve %54 olarak elde edilmiştir. Bu değerler ilk kullanım sonunda BC’nin kuru formları için %11, %21 ve %20 idi. Aynı zamanda bakteriyel selülozun yapısı ve morfolojisi SEM, XRD ve FTIR analizleri ile belirlendi.

Project Number

FBA-2019-1797

References

  • Anbia, M., Hariri, S.A., & Ashrafizadeh, S.N. (2010). Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3. Applied Surface Science, 256(10), 3228–3233. https://doi.org/10.1016/j.apsusc.2009.12.010
  • Brown, R.M., Saxena, I.M., & Kudlicka, K. (1996). Cellulose biosynthesis in higher plants. Trends in Plants Science, 5(1), 149-156. http://doi.org/10.1016/S1360-1385(96)80050-1
  • Georgouvelas, D., Abdelhamid, H.N., Li, J., Edlund, U., & Mathew, A.P. (2021). All-cellulose functional membranes for water treatment: Adsorption of metal ions and catalytic decolorization of dyes. Carbohydrate Polymers, 264, 1-10. http://doi.org/10.1016/j.carbpol.2021.118044
  • Gromet-Elhanan, Z., & Hestrin, S. (1963). Synthesis of cellulose by Acetobacter xylinum VI. Growth on citric acid-cycle intermediates. Journal of Bacteriology, 85(2), 284-292. http://doi.org/10.1128/jb.85.2.284-292.1963
  • Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum 2. preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345-352. http://doi.org/10.1042/bj0580345
  • Karahan, A.G., Akoğlu, A., Çakır, İ., Kart, A., Çakmakçı, M.L., Uygun, A., & Göktepe, F. (2011). Some properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from turkish vinegar. Journal of Applied Polymer Science, 121(3), 1823-1831. http://doi.org/10.1002/app.33818
  • Keshk, S.M.A.S., Razek, T.M.A., & Sameshima, K. (2006). Bacterial cellulose production from beet molasses. African Journal of Biotechnology, 5(17), 1519-1523.
  • Kim, J.H., Park, S., Kim, H., Kim, H.J., Yang, Y.H., Kim, Y.H., …. & Lee, S.H. (2017). Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization. Carbohydrate Polymers, 157, 137–145. https://doi.org/10.1016/j.carbpol.2016.09.074
  • Leal, A.N.R., Lima, A.C.A., Azevedo, M.G.F.A., Santos, D.K.D.N., Zaidan, L.E.M.C., Lima, V.F., & Filho, I.J.C. (2021). Removal of Remazol Black B dye using bacterial cellulose as an adsorbent. Scientia Plena, 17, 3, 034201. http://doi.org/10.14808/sci.plena.2021.034201
  • Lin, W.C., Lien, C.C., Yeh, H.J., Yu, C.M., & Hsu, S.H. (2013). Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydrate Polymers, 94, 603– 611. https://doi.org/10.1016/j.carbpol.2013.01.076
  • Mohite, B.V., & Patil, S.V. (2014). A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry, 61(2), 101-110. http://doi.org/10.1002/bab.1148
  • Rainert, K.T., Nunes, H.C.A., Gonçalves, M.J., Helm, C.V., & Tavares, L.B.B. (2021). Decolorization of the synthetic dye Remazol Brilliant Blue Reactive (RBBR) by Ganoderma lucidum on bio-adsorbent of the solid bleached sulfate paperboard coated with polyethylene terephthalate. Journal of Environmental Chemical Engineering, 9(2), 1-9. http://doi.org/10.1016/j.jece.2020.104990
  • Ross, P., Mayer, R., & Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55(1), 35-58. http://doi.org/10.1128/mr.55.1.35-58.1991
  • Ruka, D.R., Simon, G.P., & Dean, K.M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydrate Polymers, 89, 613–622. https://doi.org/10.1016/j.carbpol.2012.03.059
  • Shoda, M., & Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 10(1), 1-8. http://doi.org/10.1007/BF02931175
  • Ullah, H., Santos, H.A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23, 2291–2314. http://doi.org/10.1007/s10570-016-0986-y
  • Vyjayanthi, J.P., & Suresh, S. (2010). Decolorization of drimarene red dye using palladized bacterial cellulose in a reactor. Water Environment Research, 82(7), 601-609. http://doi.org/10.2175/106143009x12529484816114
  • Yamada, Y., Yukphan, P., Vu, H.T.L., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., & Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58, 397-404. http://doi.org/10.2323/jgam.58.397
  • Yim, S.M., Song, J.E., & Kim, H.R. (2017). Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, 59, 26–36. https://doi.org/10.1016/j.procbio.2016.07.001
  • Birben, M. (2019). Investigation on the use of microbial cellulose for dye decolorization. Master of Science, Department of Biology, Hacettepe University. Retrieved from: http://www.openaccess.hacettepe.edu.tr:8080/xmlui/bitstream/handle/11655/9389/10268015.pdf?sequence=1&isAllowed=y
There are 20 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Filiz Boran 0000-0002-8801-7987

Project Number FBA-2019-1797
Publication Date June 30, 2022
Submission Date December 16, 2021
Acceptance Date February 17, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Boran, F. (2022). Dye Removing with Dry and Wet Forms of Pure Bacterial Cellulose Produced by Gluconacetobacter xylinus. Commagene Journal of Biology, 6(1), 1-5. https://doi.org/10.31594/commagene.1037538