Research Article
BibTex RIS Cite

Breeding Ecology and Larval Development of Marsh Frogs (Pelophylax ridibundus s.l.) from East Mediterranean, Türkiye

Year 2023, Volume: 7 Issue: 1, 65 - 72, 30.06.2023
https://doi.org/10.31594/commagene.1252448

Abstract

Reproductive biology of Marsh frogs (Pelophylax ridibundus s.l.) was investigated in the Eastern Mediterranean Region of Türkiye in terms of reproductive phenology, fecundity, clutch size, reproductive effort, and mate choice. Frogs are active for approximately ten months throughout the year and hibernate between November and January. Breeding occurs from mid-January until early June and metamorphosis took 45-65 days, with juveniles observed from the end of March. The tadpole reaches its largest size at stage 38, with a mean total length of 60.61 mm and juveniles have an average snout-vent length of 20 mm at the end of metamorphosis. Secondary sexual characters can be observed on individuals reaching 45 mm snout-vent length and we could not detect any amplexed pairs below this length. The clutch size of spawned egg masses ranged between 144 – 645 and the mean egg size was calculated as 1.73 mm. The mean fecundity was 3853 (ranging between 940 and 6000) eggs and the reproductive effort was 0.094 in females. Females were approximately 16% larger than males and the snout–vent length of males and females of amplexed pairs is significantly different but not correlated. These findings signify random mating instead of size-assortative mating. However, the preference of 6.8% larger females than single ones to mate indicates a size-dependent mating for Western Mediterranean population.

Supporting Institution

TÜBİTAK, EBİLTEM

Project Number

112T913, 2013/BİL/013

Thanks

This study was financially supported by TÜBİTAK (The Scientific and Technological Research Council of Turkey, Project number: 112T913) and EBİLTEM (Ege University Science and Technology Centre, Project number: 2013/BİL/013).

References

  • Abt, G., & Reyer, H.U. (1993). Mate choice and fitness in a hybrid frog: Rana esculenta females prefer Rana lessonae males over their own. Behavioral Ecology and Sociobiology, 32, 221-228. http://doi.org/10.1007/BF00166511
  • Altig, R. (2007). A primer for the morphology of anuran tadpoles. Herpetological Conservation and Biology, 2(1), 71-74.
  • AmphibiaWeb, (2023). AmphibiaWeb: Information on amphibian biology and conservation. Berkeley, California. Retrieved from: https://amphibiaweb.org/cgi/amphib_query?where-genus=Pelophylax&where-species=ridibundus
  • Andersson, M. (1994). Sexual selection. Princeton University Press, Princeton, NJ.
  • Beebee, T.J., & Griffiths, R.A. (2005). The amphibian decline crisis: a watershed for conservation biology? Biological conservation, 125(3), 271-285. https://doi.org/10.1016/j.biocon.2005.04.009
  • Bionda, C.L., Lajmanovich, R.C., Salas, N.E., Martino, A.L., & di Tada, I.E. (2011). Reproductive ecology of the common South American toad Rhinella arenarum (Anura: Bufonidae): reproductive effort, clutch size, fecundity, and mate selection. Journal of Herpetology, 45(2), 261-264. https://doi.org/10.1670/09-238.1
  • Chajma, P., & Vojar, J. (2016). The effect of size-assortative mating on fertilization success of the common toad (Bufo bufo). Amphibia-Reptilia, 37(4), 389-395. https://doi.org/10.1163/15685381-00003069
  • Cherdantsev, V.G., Lyapkov, S.M., & Cherdantseva, E.M. (1997). Mechanisms accounting for the pattern of fecundity formation in the frog Rana arvalis Nilss.. Russian Journal of Zoology, 1(1), 30-40.
  • Crespi, B.J. (1989). Causes of assortative mating in arthropods. Animal Behaviour, 38:980–1000.
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, Mahwah, New Jersey.
  • Çiçek, K., Mermer, A., & Tok, C.V. (2011). Population dynamics of Rana macrocnemis Boulenger, 1885 at Uludağ, Western Turkey (Anura: Ranidae). Zoology in the Middle East, 53(1), 41-60. https://doi.org/10.1080/09397140.2011.10648861
  • Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex. Murray, London.
  • Erişmiş, U.C. (2011). Abundance, demography and population structure of Pelophylax ridibundus (Anura: Ranidae) in 26-August National Park (Turkey). North-Western Journal of Zoology, 7(1), 5-16.
  • Frost, D.R., Grant, T., Faivovich, J., Bain, R.H., Haas, A., Haddad, C.F., ... & Wheeler, W.C. (2006). The amphibian tree of life. Bulletin of the American Museum of natural History, 297, 1-291.
  • Gascon, C., Collins, J.P., Moore, R.D., Church, D.R., McKay, J.E., & Mendelson, J.R. (2007). Amphibian Conservation Action Plan. IUCN/SSC Amphibian Specialist Group, Gland, Switzerland and Cambridge, UK. 64 pp.
  • Gibbons, M.M., & McCarthy, T.K. (1986). The reproductive output of frogs Rana temporaria (L.) with particular reference to body size and age. Journal of Zoology, 209(4), 579-593. https://doi.org/10.1111/j.1469-7998.1986.tb03613.x
  • Gosner, K.L. (1960). A simple table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3), 183-190.
  • Green, D.M. (2019). Rarity of size-assortative mating in animals: assessing the evidence with anuran amphibians. The American Naturalist, 193(2), 279-295.
  • Gül, S., Özdemir, N., & Dursun, C. (2018). First record of interspecific amplexus behaviour between Bufotes variabilis (Pallas, 1769) and Pelophylax ridibundus (Pallas 1771) with Bufo bufo (Linnaeus, 1758) (Anura: Bufonidae) from Turkey. Herpetology Notes, 11, 153-155.
  • Hammer, Ø., Harper, D.A., & Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 1-9.
  • Hettyei, A., Török, J., & Hévizi, G. (2005). Male mate choice lacking in the agile frog, Rana dalmatina. Copeia, 2, 403-408.
  • Heyer, W.R., Donnelly, M., McDiarmid, R.W., Hayek, L.C., & Foster, M.S. (1994). Measuring and monitoring biological diversity. Standard Methods for Amphibians. Smithsonian Institution Press, Washington, 364 pp.
  • Hooper, P.L., & Miller G.F. (2008). Mutual mate choice can drive costly signaling even under perfect monogamy. Adaptive Behavior, 16, 53-70.
  • Jiang, Y., Bolnick, D.I., & Kirkpatrick, M. (2013). Assortative mating in animals. The American Naturalist, 181(6), E125-E138. http://dx.doi.org/10.5061/dryad.r706v
  • Lovich, J.E., & Gibbons, J.W. (1992). A review of techniques for quantifying sexual size dimorphism. Growth Development and Aging, 56, 269-281.
  • Lipsey, M.W., & Wilson D. B. (2001). Practical meta-analysis. Sage, Thousand Oaks, CA.
  • Liu, P., Zhang, Z., Zhao, S., & Zhao, W. (2012). Effect of female reproduction and mate choice on sexual size dimorphism in the northeast treefrog Hyla ussuriensis (Anura: Hylidae) in China. Asian Herpetological Research, 3, 273-279.
  • Neff, B.D., & Pitcher, T.E. (2005). Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Molecular ecology, 14(1), 19-38. https://doi.org/10.1111/j.1365-294X.2004.02395.x
  • Oswald, P., Schulte, L., Mühlenhaupt, M., & Caspers, B. (2022). Love is blind: interspecific amplexus of two anuran species, the Common Toad (Bufo bufo) and the Common Frog (Rana temporaria), with European Fire Salamanders (Salamandra salamandra terrestris). Herpetology Notes, 15, 811-815.
  • Özeti, N., & Yılmaz, İ. (1994). Türkiye amfibileri (The amphibians of Turkey; taxonomic list, distrubution, key for identification). E. Ü. Fen Fakültesi, Kitaplar Serisi No: 151, Bornova/İzmir.
  • Paton, P.W., & Crouch III, W.B. (2002). Using the phenology of pond‐breeding amphibians to develop conservation strategies. Conservation Biology, 16(1), 194-204. https://doi.org/10.1046/j.1523-1739.2002.00260.x
  • Paton, P.W., & Harris, R.N. (2009). Egg mass and nest counts. In: Dodd CK (ed) Amphibian Ecology and Conservation: A Handbook of Techniques, Oxford University Press, New York, 143-165.
  • Räsänen, K., Söderman, F., Laurila, A., & Merilä, J. (2008). Geographic variation in maternal investment: acidity affects egg size and fecundity in Rana arvalis. Ecology, 89(9), 2553-2562. https://doi.org/10.1890/07-0168.1
  • Redden, D.T., & Allison, D.B. (2006). The effect of assortative mating upon genetic association studies: spurious associations and population substructure in the absence of admixture. Behavior genetics, 36, 678-686. https://doi.org/10.1007/s10519-006-9060-0
  • Shchupak, E.L., & Ivanova, N.L. (1990). Peculiarities of the growth and development of larvae of Rana ridibunda: field observations and experiment. Zookultura Amphibii, Moscow, 38-46.
  • Shine, R. (1979). Sexual selection and sexual dimorphism in the Amphibia. Copeia, 1979, 297-306. https://doi.org/10.2307/1443418
  • Skelly, D.K., & Richardson, J.L. (2009). Larval sampling. In: Dodd CK (ed) Amphibian Ecology and Conservation: A Handbook of Techniques, Oxford University Press, New York, 55-70.
  • Stearns, S.C. (1992). The evolution of life histories. London, Oxford University Press, 249 pp.
  • Surova, G.S., & Cherdantsev, V.G. (1987). Embryonic morphs in the populations of brown frogs egg size and rates of larval growth in Moscow district USSR Rana temporaria and Rana arvalis. Zoologicheskii zhurnal, 66, 1864-1872.
  • Taborsky, B., Guyer L., & Demus P. (2014). “Prudent habitat choice”: a novel mechanism of size-assortative mating. Journal of Evolutionary Biology, 27, 1217-1228.
  • Tarkhnishvili, D.N., & Gokhelashvili, R.K. (1999). The amphibians of the Caucasus (Advances in Amphibian Research in the Former Soviet Union 4). Sofia, Pensoft Publications, 239 pp.
  • Tsuji, H., & Lue, K.Y. (2000). The reproductive ecology of female Rana (Limnonectes) kuhlii, a fanged frog of Taiwan, with particular emphasis on multiple clutches. Herpetologica, 56(2), 153-165.
  • Wells, K.D. (2007). The ecology and behavior of amphibians. In The Ecology and Behavior of Amphibians. Chicago, University of Chicago press, 1148 pp.

Doğu Akdeniz, Türkiye'deki Su Kurbağalarının (Pelophylax ridibundus-complex) Üreme Ekolojisi ve Larval Gelişimi

Year 2023, Volume: 7 Issue: 1, 65 - 72, 30.06.2023
https://doi.org/10.31594/commagene.1252448

Abstract

Anadolu su kurbağalarının (Pelophylax ridibundus s.l.) üreme biyolojisi, üreme fenolojisi, fekundite, yumurta kümesi büyüklüğü, üreme çabası ve eş seçimi açısından Türkiye'nin Doğu Akdeniz Bölgesi'nde incelenmiştir. Kurbağalar yıl boyunca yaklaşık on ay aktiftir, Kasım ve Ocak ayları arasında kış uykusuna yatar. Üreme Ocak ortasından Haziran başına kadar gerçekleşir. Metamorfoz süresi 45 – 65 gün olarak belirlenmiş ve Mart ayı sonundan itibaren metamorfozunu tamamlamış yavrular gözlenmiştir. İribaşlar, ortalama 60,61 mm total uzunluk ile 38. aşamada en büyük boyutuna ulaşır. Yavrular metamorfoz sonunda ortalama 20 mm burun ucu-kloak uzunluğuna sahiptir. 45 mm burun ucu-kloak uzunluğuna sahip bireylerde ikincil eşeysel karakterler gözlenebilir ve bu uzunluğun altında herhangi bir ampleksus çifti tespit edilmemiştir. Bırakılan yumurta kümelerinin yumurta sayısı 144 - 645 arasında değişmektedir ve ortalama yumurta boyutu 1.73 mm olarak hesaplanmıştır. Dişilerde ortalama fekundite 3853 (940 ile 6000 arasında) yumurta ve üreme çabası 0.094 olarak hesaplanmıştır. Dişiler erkeklerden yaklaşık %16 daha büyüktür ve ampleksustaki erkek ve dişilerin burun ucu-kloak uzunluğu önemli ölçüde farklıdır ancak aralarında bir korelasyon yoktur. Bu bulgular büyüklük-sınıflamalı çiftleşme yerine rastgele çiftleşmenin gerçekleştiğini, bunun yanında, çiftleşmek için çiftleşmeyen dişilere oranla %6.8 daha büyük dişilerin tercih edilmesi Batı Akdeniz popülasyonu için büyüklük-bağımlı çiftleşmenin gerçekleştiğini işaret etmektedir.

Project Number

112T913, 2013/BİL/013

References

  • Abt, G., & Reyer, H.U. (1993). Mate choice and fitness in a hybrid frog: Rana esculenta females prefer Rana lessonae males over their own. Behavioral Ecology and Sociobiology, 32, 221-228. http://doi.org/10.1007/BF00166511
  • Altig, R. (2007). A primer for the morphology of anuran tadpoles. Herpetological Conservation and Biology, 2(1), 71-74.
  • AmphibiaWeb, (2023). AmphibiaWeb: Information on amphibian biology and conservation. Berkeley, California. Retrieved from: https://amphibiaweb.org/cgi/amphib_query?where-genus=Pelophylax&where-species=ridibundus
  • Andersson, M. (1994). Sexual selection. Princeton University Press, Princeton, NJ.
  • Beebee, T.J., & Griffiths, R.A. (2005). The amphibian decline crisis: a watershed for conservation biology? Biological conservation, 125(3), 271-285. https://doi.org/10.1016/j.biocon.2005.04.009
  • Bionda, C.L., Lajmanovich, R.C., Salas, N.E., Martino, A.L., & di Tada, I.E. (2011). Reproductive ecology of the common South American toad Rhinella arenarum (Anura: Bufonidae): reproductive effort, clutch size, fecundity, and mate selection. Journal of Herpetology, 45(2), 261-264. https://doi.org/10.1670/09-238.1
  • Chajma, P., & Vojar, J. (2016). The effect of size-assortative mating on fertilization success of the common toad (Bufo bufo). Amphibia-Reptilia, 37(4), 389-395. https://doi.org/10.1163/15685381-00003069
  • Cherdantsev, V.G., Lyapkov, S.M., & Cherdantseva, E.M. (1997). Mechanisms accounting for the pattern of fecundity formation in the frog Rana arvalis Nilss.. Russian Journal of Zoology, 1(1), 30-40.
  • Crespi, B.J. (1989). Causes of assortative mating in arthropods. Animal Behaviour, 38:980–1000.
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, Mahwah, New Jersey.
  • Çiçek, K., Mermer, A., & Tok, C.V. (2011). Population dynamics of Rana macrocnemis Boulenger, 1885 at Uludağ, Western Turkey (Anura: Ranidae). Zoology in the Middle East, 53(1), 41-60. https://doi.org/10.1080/09397140.2011.10648861
  • Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex. Murray, London.
  • Erişmiş, U.C. (2011). Abundance, demography and population structure of Pelophylax ridibundus (Anura: Ranidae) in 26-August National Park (Turkey). North-Western Journal of Zoology, 7(1), 5-16.
  • Frost, D.R., Grant, T., Faivovich, J., Bain, R.H., Haas, A., Haddad, C.F., ... & Wheeler, W.C. (2006). The amphibian tree of life. Bulletin of the American Museum of natural History, 297, 1-291.
  • Gascon, C., Collins, J.P., Moore, R.D., Church, D.R., McKay, J.E., & Mendelson, J.R. (2007). Amphibian Conservation Action Plan. IUCN/SSC Amphibian Specialist Group, Gland, Switzerland and Cambridge, UK. 64 pp.
  • Gibbons, M.M., & McCarthy, T.K. (1986). The reproductive output of frogs Rana temporaria (L.) with particular reference to body size and age. Journal of Zoology, 209(4), 579-593. https://doi.org/10.1111/j.1469-7998.1986.tb03613.x
  • Gosner, K.L. (1960). A simple table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3), 183-190.
  • Green, D.M. (2019). Rarity of size-assortative mating in animals: assessing the evidence with anuran amphibians. The American Naturalist, 193(2), 279-295.
  • Gül, S., Özdemir, N., & Dursun, C. (2018). First record of interspecific amplexus behaviour between Bufotes variabilis (Pallas, 1769) and Pelophylax ridibundus (Pallas 1771) with Bufo bufo (Linnaeus, 1758) (Anura: Bufonidae) from Turkey. Herpetology Notes, 11, 153-155.
  • Hammer, Ø., Harper, D.A., & Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 1-9.
  • Hettyei, A., Török, J., & Hévizi, G. (2005). Male mate choice lacking in the agile frog, Rana dalmatina. Copeia, 2, 403-408.
  • Heyer, W.R., Donnelly, M., McDiarmid, R.W., Hayek, L.C., & Foster, M.S. (1994). Measuring and monitoring biological diversity. Standard Methods for Amphibians. Smithsonian Institution Press, Washington, 364 pp.
  • Hooper, P.L., & Miller G.F. (2008). Mutual mate choice can drive costly signaling even under perfect monogamy. Adaptive Behavior, 16, 53-70.
  • Jiang, Y., Bolnick, D.I., & Kirkpatrick, M. (2013). Assortative mating in animals. The American Naturalist, 181(6), E125-E138. http://dx.doi.org/10.5061/dryad.r706v
  • Lovich, J.E., & Gibbons, J.W. (1992). A review of techniques for quantifying sexual size dimorphism. Growth Development and Aging, 56, 269-281.
  • Lipsey, M.W., & Wilson D. B. (2001). Practical meta-analysis. Sage, Thousand Oaks, CA.
  • Liu, P., Zhang, Z., Zhao, S., & Zhao, W. (2012). Effect of female reproduction and mate choice on sexual size dimorphism in the northeast treefrog Hyla ussuriensis (Anura: Hylidae) in China. Asian Herpetological Research, 3, 273-279.
  • Neff, B.D., & Pitcher, T.E. (2005). Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Molecular ecology, 14(1), 19-38. https://doi.org/10.1111/j.1365-294X.2004.02395.x
  • Oswald, P., Schulte, L., Mühlenhaupt, M., & Caspers, B. (2022). Love is blind: interspecific amplexus of two anuran species, the Common Toad (Bufo bufo) and the Common Frog (Rana temporaria), with European Fire Salamanders (Salamandra salamandra terrestris). Herpetology Notes, 15, 811-815.
  • Özeti, N., & Yılmaz, İ. (1994). Türkiye amfibileri (The amphibians of Turkey; taxonomic list, distrubution, key for identification). E. Ü. Fen Fakültesi, Kitaplar Serisi No: 151, Bornova/İzmir.
  • Paton, P.W., & Crouch III, W.B. (2002). Using the phenology of pond‐breeding amphibians to develop conservation strategies. Conservation Biology, 16(1), 194-204. https://doi.org/10.1046/j.1523-1739.2002.00260.x
  • Paton, P.W., & Harris, R.N. (2009). Egg mass and nest counts. In: Dodd CK (ed) Amphibian Ecology and Conservation: A Handbook of Techniques, Oxford University Press, New York, 143-165.
  • Räsänen, K., Söderman, F., Laurila, A., & Merilä, J. (2008). Geographic variation in maternal investment: acidity affects egg size and fecundity in Rana arvalis. Ecology, 89(9), 2553-2562. https://doi.org/10.1890/07-0168.1
  • Redden, D.T., & Allison, D.B. (2006). The effect of assortative mating upon genetic association studies: spurious associations and population substructure in the absence of admixture. Behavior genetics, 36, 678-686. https://doi.org/10.1007/s10519-006-9060-0
  • Shchupak, E.L., & Ivanova, N.L. (1990). Peculiarities of the growth and development of larvae of Rana ridibunda: field observations and experiment. Zookultura Amphibii, Moscow, 38-46.
  • Shine, R. (1979). Sexual selection and sexual dimorphism in the Amphibia. Copeia, 1979, 297-306. https://doi.org/10.2307/1443418
  • Skelly, D.K., & Richardson, J.L. (2009). Larval sampling. In: Dodd CK (ed) Amphibian Ecology and Conservation: A Handbook of Techniques, Oxford University Press, New York, 55-70.
  • Stearns, S.C. (1992). The evolution of life histories. London, Oxford University Press, 249 pp.
  • Surova, G.S., & Cherdantsev, V.G. (1987). Embryonic morphs in the populations of brown frogs egg size and rates of larval growth in Moscow district USSR Rana temporaria and Rana arvalis. Zoologicheskii zhurnal, 66, 1864-1872.
  • Taborsky, B., Guyer L., & Demus P. (2014). “Prudent habitat choice”: a novel mechanism of size-assortative mating. Journal of Evolutionary Biology, 27, 1217-1228.
  • Tarkhnishvili, D.N., & Gokhelashvili, R.K. (1999). The amphibians of the Caucasus (Advances in Amphibian Research in the Former Soviet Union 4). Sofia, Pensoft Publications, 239 pp.
  • Tsuji, H., & Lue, K.Y. (2000). The reproductive ecology of female Rana (Limnonectes) kuhlii, a fanged frog of Taiwan, with particular emphasis on multiple clutches. Herpetologica, 56(2), 153-165.
  • Wells, K.D. (2007). The ecology and behavior of amphibians. In The Ecology and Behavior of Amphibians. Chicago, University of Chicago press, 1148 pp.
There are 43 citations in total.

Details

Primary Language English
Subjects Structural Biology, Animal Developmental and Reproductive Biology
Journal Section Research Articles
Authors

Yusuf Bayrakcı 0000-0001-5992-0643

Kerim Çiçek 0000-0002-6753-0757

Project Number 112T913, 2013/BİL/013
Early Pub Date June 13, 2023
Publication Date June 30, 2023
Submission Date February 19, 2023
Acceptance Date June 6, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Bayrakcı, Y., & Çiçek, K. (2023). Breeding Ecology and Larval Development of Marsh Frogs (Pelophylax ridibundus s.l.) from East Mediterranean, Türkiye. Commagene Journal of Biology, 7(1), 65-72. https://doi.org/10.31594/commagene.1252448