Research Article
BibTex RIS Cite

Effect of Lambda-cyhalothrin on the Gill Phospholipid (PL) Subclass of Oreochromis niloticus

Year 2023, Volume: 7 Issue: 2, 152 - 158, 31.12.2023
https://doi.org/10.31594/commagene.1399339

Abstract

Fatty acids have a crucial role in providing energy and performing essential functions in living organisms. Moreover, these substances exhibit the most significant alterations in their structure based on ecotoxicological parameters when viewed from a biochemical perspective. These bioactive chemicals are present in the cellular architecture. The study of these fatty acids, crucial for maintaining the integrity and permeability of cell membranes, holds great significance for all living organisms. Consequently, doing fatty acid analysis specifically at the phospholipid level holds significant importance.
The impact of lambda cyhalothrin on the fatty acid content of several phospholipid subclasses (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS) in the gill tissue of O. niloticus (Perciformes: Cichlidae) was assessed using gas chromatography. The alterations in the fatty acid composition was analyzed 21 days after exposure.
Following the complete extraction of lipids from gill tissue, the tissue was subsequently separated into different subclasses of phospholipids using thin layer chromatography. The samples were subjected to methylation and then evaluated using Gas Chromatography to determine the percentage of the fatty acid. After doing the analysis, a grand total of 16 fatty acids were identified. The research revealed that the primary fatty acids were 16:0 and 18:0 of saturated fatty acids, monounsaturated 18:1n-9, and polyunsaturated 18:2n-6, 20:4n-6, and 22:6n-6. Upon analyzing the distribution of fatty acids, it was observed that PC, PE, and PI included 16:0, PE contained 18:1, PE and PS contained C18:2n-6 and 20:4n-6, and significant alterations in C22:6n-3 were detected in PE. Our investigation revealed that the n-3/n-6 ratio of fish in the PE subclass was the lowest when compared to PC, PI, and PS.

References

  • Alonso, M.B., Feo, M.L., Corcellas, C., Vidal, L.G., Bertozzi, C.P., Marigo, J., ...& Barceló, D. (2012). Pyrethroids: A new threat to marine mammals? Environment International, 47, 99–106. https://doi.org/10.1016/j.envint.2012.06.010
  • Andrade, F.H., Figueiroa, F.C., Bersano, P.R., Bissacot, D.Z., & Rocha, N.S. (2010). Malignant mammary tumor in female dogs: environmental contaminants. Diagnostic Pathology, 5(1), 45. https://doi.org/10.1186/1746-1596-5-45
  • Baldisserotto, B., Mancera, J.M., & Kapoor, B.G. (Eds.). (2019). Fish Osmoregulation. CRC Press. https://doi.org/10.1201/9780429063909
  • Bedi, J.S., Gill, J.P.S., Aulakh, R.S., & Kaur, P. (2015). Pesticide Residues in Bovine Milk in Punjab, India: Spatial Variation and Risk Assessment to Human Health. Archives of Environmental Contamination and Toxicology, 69(2), 230–240. https://doi.org/10.1007/s00244-015-0163-6
  • Bell, M.V., Henderson, R.J., & Sargent, J.R. (1986). The role of polyunsaturated fatty acids in fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 83(4), 711–719. https://doi.org/10.1016/0305-0491(86)90135-5
  • Ben Ameur, W., de Lapuente, J., El Megdiche, Y., Barhoumi, B., Trabelsi, S., Camps, L., ...& Borràs, M. (2012). Oxidative stress, genotoxicity and histopathology biomarker responses in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) liver from Bizerte Lagoon (Tunisia). Marine Pollution Bulletin, 64(2), 241–251. https://doi.org/10.1016/j.marpolbul.2011.11.026
  • Brown, M.F. (1994). Modulation of rhodopsin function by properties of the membrane bilayer. Chemistry and Physics of Lipids, 73(1–2), 159–180. https://doi.org/10.1016/0009-3084(94)90180-5
  • Cengiz, E.I., Bayar, A.S., & Kizmaz, V. (2016). The protective effect of vitamin E against changes in fatty acid composition of phospholipid subclasses in gill tissue of Oreochromis niloticus exposed to deltamethrin. Chemosphere, 147, 138–143. https://doi.org/10.1016/j.chemosphere.2015.12.110
  • Cengiz, E.I., Bayar, A.S., Kızmaz, V., Başhan, M., & Satar, A. (2017). Acute Toxicity of Deltamethrin on the Fatty Acid Composition of Phospholipid Classes in Liver and Gill Tissues of Nile tilapia. International Journal of Environmental Research, 11(3), 377–385. https://doi.org/10.1007/s41742-017-0034-2
  • Corcellas, C., Eljarrat, E., & Barceló, D. (2015). First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). Environment International, 75, 110–116. https://doi.org/10.1016/j.envint.2014.11.007
  • Corcellas, C., Feo, M.L., Torres, J.P., Malm, O., Ocampo-Duque, W., Eljarrat, E., & Barceló, D. (2012). Pyrethroids in human breast milk: Occurrence and nursing daily intake estimation. Environment International, 47, 17–22. https://doi.org/10.1016/j.envint.2012.05.007
  • Ellıott, M., Farnham, A.W., Janes, N.F., Needham, P.H., Pulman, D.A., &Stevenson, J.H. (1973). A Photostable Pyrethroid. Nature, 246(5429), 169–170. https://doi.org/10.1038/246169a0
  • FAO. (2020). The State of World Fisheries and Aquaculture 2020. FAO. https://doi.org/10.4060/ca9229en
  • Fokina, N.N., Ruokolainen, T.R., & Nemova, N.N. (2017). Lipid Composition Modifications in the Blue Mussels (Mytilus edulis L.) from the White Sea. In Organismal and Molecular Malacology. InTech. https://doi.org/10.5772/67811
  • Golubev, V.N. (1993). Mechanisms of interaction of pesticides with the lipid bilayer in cell membranes. Russian Chemical Reviews, 62(7), 683–691. https://doi.org/10.1070/RC1993v062n07ABEH000040
  • Halliwell, B., & Gutteridge, J.M.C. (2015). Free Radicals in Biology and Medicine. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
  • Hodge, L., Salome, C.M., Peat, J.K., Haby, M.M., Xuan, W., & Woolcock, A.J. (1996). Consumption of oily fish and childhood asthma risk. Medical Journal of Australia, 164(3), 137–140. https://doi.org/10.5694/j.1326-5377.1996.tb122010.x
  • Huynh, M.D., & Kitts, D.D. (2009). Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chemistry, 114(3), 912–918. https://doi.org/10.1016/j.foodchem.2008.10.038
  • Innes, J.K., & Calder, P.C. (2020). Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. International Journal of Molecular Sciences, 21(4), 1362. https://doi.org/10.3390/ijms21041362
  • Innis, S.M. (2003). Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. The Journal of Pediatrics, 143(4), 1–8. https://doi.org/10.1067/S0022-3476(03)00396-2
  • Jin, S., Chen, H., Li, Y., Zhong, H., Sun, W., Wang, J., ...& Wang, J. (2018). Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21. Annals of the Rheumatic Diseases, 77(11), 1644–1652. https://doi.org/10.1136/annrheumdis-2018-213511
  • Katsuda, Y. (1999). Development of and future prospects for pyrethroid chemistry. Pesticide Science, 55(8), 775–782. https://doi.org/10.1002/(SICI)1096-9063(199908)55:8<775::AID-PS27>3.0.CO;2-N
  • Kaushik, S.J., Corraze, G., Radunz‐Neto, J., Larroquet, L., & Dumas, J. (2006). Fatty acid profiles of wild brown trout and Atlantic salmon juveniles in the Nivelle basin. Journal of Fish Biology, 68(5), 1376–1387. https://doi.org/10.1111/j.0022-1112.2006.01005.x
  • Kotkat, H.M. (1999). Influence of Pesticide Pyrethroid Deltamethrin Pollution on the Phospholipid Composition of Carp Erythrocyte Plasma Membrane. Asian Fisheries Science, 12(2). https://doi.org/10.33997/j.afs.1999.12.2.007
  • Meyer, B.N., Lam, C., Moore, S., & Jones, R.L. (2013). Laboratory Degradation Rates of 11 Pyrethroids under Aerobic and Anaerobic Conditions. Journal of Agricultural and Food Chemistry, 61(20), 4702–4708. https://doi.org/10.1021/jf400382u
  • Murzina, S.A., Pekkoeva, S.N., Kondakova, E.A., Nefedova, Z.A., Filippova, K.A., Nemova, N.N., ...& Falk-Petersen, S. (2020). Tiny but Fatty: Lipids and Fatty Acids in the Daubed Shanny (Leptoclinus maculatus), a Small Fish in Svalbard Waters. Biomolecules, 10(3), 368. https://doi.org/10.3390/biom10030368
  • Piner, P., & Üner, N. (2012). Oxidative and apoptotic effects of lambda-cyhalothrin modulated by piperonyl butoxide in the liver of Oreochromis niloticus. Environmental Toxicology and Pharmacology, 33(3), 414–420. https://doi.org/10.1016/j.etap.2012.01.001
  • Rabeh, I., Telahigue, K., Hajji, T., Kheriji, S., Besbes, A., Besbes, R., & El Cafsi, M. (2022). Fatty acid composition of phospholipids and triacylglycerols in the flesh of the thick-lipped grey mullet (Chelon labrosus) living in Tunisian geothermal water and seawater: A comparative study. Grasas y Aceites, 73(1), e448. https://doi.org/10.3989/gya.1127202
  • Ruggeri, B., & Thoroughgood, C.A. (1985). Prostaglandins in aquatic fauna: a comprehensive review. Marine Ecology Progress Series, 23, 301–306.
  • Shirai, N., Terayama, M., & Takeda, H. (2002). Effect of season on the fatty acid composition and free amino acid content of the sardine Sardinops melanostictus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 131(3), 387–393. https://doi.org/10.1016/S1096-4959(01)00507-3
  • Smith, R.L., Soeters, M.R., Wüst, R.C.I., & Houtkooper, R.H. (2018). Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocrine Reviews, 39(4), 489–517. https://doi.org/10.1210/er.2017-00211
  • Soderlund, D.M., Clark, J.M., Sheets, L.P., Mullin, L.S., Piccirillo, V.J., Sargent, D., ...& Weiner, M. L. (2002). Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology, 171(1), 3–59. https://doi.org/10.1016/S0300-483X(01)00569-8
  • Vaden, D. L., Gohil, V. M., Gu, Z., & Greenberg, M. L. (2005). Separation of yeast phospholipids using one-dimensional thin-layer chromatography. Analytical Biochemistry, 338(1), 162–164. https://doi.org/10.1016/j.ab.2004.11.020
  • Zhang, W. (2018). Global pesticide use: Profile, trend, cost / benefit and more. Proceedings of the International Academy of Ecology and Environmental Sciences, 8(1), 1–27.

Lambda-cyhalothrin'nin Oreochromis niloticus’un Solungaç Fosfolipid (PL) Alt Sınıfı Üzerine Etkisi

Year 2023, Volume: 7 Issue: 2, 152 - 158, 31.12.2023
https://doi.org/10.31594/commagene.1399339

Abstract

Yağ asitleri hem enerji kaynağı olarak hem de canlı sistemler için fonksiyonel görevler açısından oldukça önemlidir. Ayrıca bu bileşikler biyokimyasal açıdan ekotoksikolojik faktörlere bağlı olarak en fazla değişim gösteren yapılardır. Bu biyokimyasal bileşikler hücre yapısında bulunur. Bu nedenle yaşamda membran bütünlüğü ve geçirgenliği için çok önemli olan bu yağ asitlerinin analizi canlılar için oldukça önemlidir. Bu nedenle fosfolipit düzeyinde yağ asidi analizi oldukça önemlidir.
Sentetik piretroidler (SP'ler), güçlü bir pestisit aktiviteye sahip olmalarının yanı sıra çevrede biyolojik olarak parçalanabilmeleri nedeniyle tarımda kullanılan geniş spektrumlu pestisitlerdir. Bu çalışmada, bu pestisitlerin, çevredeki toksinlerin neden olduğu kirliliğin değerlendirilmesi ve biyoizlenmesi için önemli bir belirteç olan Oreochromis niloticus’un solungaç dokusunda fosfolipit alt sınıflarına ait yağ asitlerinin maruziyet etkisinin belirlenmesi amaçlandı. Lambda cyhalothrin, O. niloticus'un (Perciformes: Cichlidae) solungaç dokusundaki fosfolipid alt sınıflarının (fosfatidilklonin (PC), fosfatidiletanolamin (PE), fosfatidilinositol (PI) ve fosfatidilserin (PS)) yağ asidi bileşimindeki etkileri gaz kromatografisi ile belirlendi. Yağ asidi profilindeki değişiklikler, maruziyetten 21gün sonra analiz edildi.
Solungaç dokusunun total lipid ekstraksiyonu yapıldıktan sonra ince tabaka kromatografisi ile fosfolipid alt sınıflarına ayrıldı. Metilasyon işleminden sonra numuneler Gaz Kromatografisi ile yağ asidi olarak kalitatif olarak analiz edilmiştir. Analiz sonucunda toplam 16 yağ asidi tespit edildi. Analizler sonucunda doymuş yağ asitlerinden 16:0 ve 18:0; tekli doymamışlardan 18:1n-9; çoklu doymamış olanlardan 18:2n-6, 20:4n-6 ve 22:6n-6 ana yağ asitleri olarak belirlendi. Yağ asidi dağılımı incelendiğinde, PC, PE ve PI'da 16:0; PE'de 18:1; PE ve PS'de C18:2n-6 ve 20:4n-6; PE'de C22:6n-3’te önemli değişiklikler bulundu. Çalışmamızda balıkların PE alt sınıfı n-3/n-6 oranı PC, PI ve PS'ye göre en düşük düzeyde bulunmuştur.

References

  • Alonso, M.B., Feo, M.L., Corcellas, C., Vidal, L.G., Bertozzi, C.P., Marigo, J., ...& Barceló, D. (2012). Pyrethroids: A new threat to marine mammals? Environment International, 47, 99–106. https://doi.org/10.1016/j.envint.2012.06.010
  • Andrade, F.H., Figueiroa, F.C., Bersano, P.R., Bissacot, D.Z., & Rocha, N.S. (2010). Malignant mammary tumor in female dogs: environmental contaminants. Diagnostic Pathology, 5(1), 45. https://doi.org/10.1186/1746-1596-5-45
  • Baldisserotto, B., Mancera, J.M., & Kapoor, B.G. (Eds.). (2019). Fish Osmoregulation. CRC Press. https://doi.org/10.1201/9780429063909
  • Bedi, J.S., Gill, J.P.S., Aulakh, R.S., & Kaur, P. (2015). Pesticide Residues in Bovine Milk in Punjab, India: Spatial Variation and Risk Assessment to Human Health. Archives of Environmental Contamination and Toxicology, 69(2), 230–240. https://doi.org/10.1007/s00244-015-0163-6
  • Bell, M.V., Henderson, R.J., & Sargent, J.R. (1986). The role of polyunsaturated fatty acids in fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 83(4), 711–719. https://doi.org/10.1016/0305-0491(86)90135-5
  • Ben Ameur, W., de Lapuente, J., El Megdiche, Y., Barhoumi, B., Trabelsi, S., Camps, L., ...& Borràs, M. (2012). Oxidative stress, genotoxicity and histopathology biomarker responses in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) liver from Bizerte Lagoon (Tunisia). Marine Pollution Bulletin, 64(2), 241–251. https://doi.org/10.1016/j.marpolbul.2011.11.026
  • Brown, M.F. (1994). Modulation of rhodopsin function by properties of the membrane bilayer. Chemistry and Physics of Lipids, 73(1–2), 159–180. https://doi.org/10.1016/0009-3084(94)90180-5
  • Cengiz, E.I., Bayar, A.S., & Kizmaz, V. (2016). The protective effect of vitamin E against changes in fatty acid composition of phospholipid subclasses in gill tissue of Oreochromis niloticus exposed to deltamethrin. Chemosphere, 147, 138–143. https://doi.org/10.1016/j.chemosphere.2015.12.110
  • Cengiz, E.I., Bayar, A.S., Kızmaz, V., Başhan, M., & Satar, A. (2017). Acute Toxicity of Deltamethrin on the Fatty Acid Composition of Phospholipid Classes in Liver and Gill Tissues of Nile tilapia. International Journal of Environmental Research, 11(3), 377–385. https://doi.org/10.1007/s41742-017-0034-2
  • Corcellas, C., Eljarrat, E., & Barceló, D. (2015). First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). Environment International, 75, 110–116. https://doi.org/10.1016/j.envint.2014.11.007
  • Corcellas, C., Feo, M.L., Torres, J.P., Malm, O., Ocampo-Duque, W., Eljarrat, E., & Barceló, D. (2012). Pyrethroids in human breast milk: Occurrence and nursing daily intake estimation. Environment International, 47, 17–22. https://doi.org/10.1016/j.envint.2012.05.007
  • Ellıott, M., Farnham, A.W., Janes, N.F., Needham, P.H., Pulman, D.A., &Stevenson, J.H. (1973). A Photostable Pyrethroid. Nature, 246(5429), 169–170. https://doi.org/10.1038/246169a0
  • FAO. (2020). The State of World Fisheries and Aquaculture 2020. FAO. https://doi.org/10.4060/ca9229en
  • Fokina, N.N., Ruokolainen, T.R., & Nemova, N.N. (2017). Lipid Composition Modifications in the Blue Mussels (Mytilus edulis L.) from the White Sea. In Organismal and Molecular Malacology. InTech. https://doi.org/10.5772/67811
  • Golubev, V.N. (1993). Mechanisms of interaction of pesticides with the lipid bilayer in cell membranes. Russian Chemical Reviews, 62(7), 683–691. https://doi.org/10.1070/RC1993v062n07ABEH000040
  • Halliwell, B., & Gutteridge, J.M.C. (2015). Free Radicals in Biology and Medicine. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
  • Hodge, L., Salome, C.M., Peat, J.K., Haby, M.M., Xuan, W., & Woolcock, A.J. (1996). Consumption of oily fish and childhood asthma risk. Medical Journal of Australia, 164(3), 137–140. https://doi.org/10.5694/j.1326-5377.1996.tb122010.x
  • Huynh, M.D., & Kitts, D.D. (2009). Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chemistry, 114(3), 912–918. https://doi.org/10.1016/j.foodchem.2008.10.038
  • Innes, J.K., & Calder, P.C. (2020). Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. International Journal of Molecular Sciences, 21(4), 1362. https://doi.org/10.3390/ijms21041362
  • Innis, S.M. (2003). Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. The Journal of Pediatrics, 143(4), 1–8. https://doi.org/10.1067/S0022-3476(03)00396-2
  • Jin, S., Chen, H., Li, Y., Zhong, H., Sun, W., Wang, J., ...& Wang, J. (2018). Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21. Annals of the Rheumatic Diseases, 77(11), 1644–1652. https://doi.org/10.1136/annrheumdis-2018-213511
  • Katsuda, Y. (1999). Development of and future prospects for pyrethroid chemistry. Pesticide Science, 55(8), 775–782. https://doi.org/10.1002/(SICI)1096-9063(199908)55:8<775::AID-PS27>3.0.CO;2-N
  • Kaushik, S.J., Corraze, G., Radunz‐Neto, J., Larroquet, L., & Dumas, J. (2006). Fatty acid profiles of wild brown trout and Atlantic salmon juveniles in the Nivelle basin. Journal of Fish Biology, 68(5), 1376–1387. https://doi.org/10.1111/j.0022-1112.2006.01005.x
  • Kotkat, H.M. (1999). Influence of Pesticide Pyrethroid Deltamethrin Pollution on the Phospholipid Composition of Carp Erythrocyte Plasma Membrane. Asian Fisheries Science, 12(2). https://doi.org/10.33997/j.afs.1999.12.2.007
  • Meyer, B.N., Lam, C., Moore, S., & Jones, R.L. (2013). Laboratory Degradation Rates of 11 Pyrethroids under Aerobic and Anaerobic Conditions. Journal of Agricultural and Food Chemistry, 61(20), 4702–4708. https://doi.org/10.1021/jf400382u
  • Murzina, S.A., Pekkoeva, S.N., Kondakova, E.A., Nefedova, Z.A., Filippova, K.A., Nemova, N.N., ...& Falk-Petersen, S. (2020). Tiny but Fatty: Lipids and Fatty Acids in the Daubed Shanny (Leptoclinus maculatus), a Small Fish in Svalbard Waters. Biomolecules, 10(3), 368. https://doi.org/10.3390/biom10030368
  • Piner, P., & Üner, N. (2012). Oxidative and apoptotic effects of lambda-cyhalothrin modulated by piperonyl butoxide in the liver of Oreochromis niloticus. Environmental Toxicology and Pharmacology, 33(3), 414–420. https://doi.org/10.1016/j.etap.2012.01.001
  • Rabeh, I., Telahigue, K., Hajji, T., Kheriji, S., Besbes, A., Besbes, R., & El Cafsi, M. (2022). Fatty acid composition of phospholipids and triacylglycerols in the flesh of the thick-lipped grey mullet (Chelon labrosus) living in Tunisian geothermal water and seawater: A comparative study. Grasas y Aceites, 73(1), e448. https://doi.org/10.3989/gya.1127202
  • Ruggeri, B., & Thoroughgood, C.A. (1985). Prostaglandins in aquatic fauna: a comprehensive review. Marine Ecology Progress Series, 23, 301–306.
  • Shirai, N., Terayama, M., & Takeda, H. (2002). Effect of season on the fatty acid composition and free amino acid content of the sardine Sardinops melanostictus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 131(3), 387–393. https://doi.org/10.1016/S1096-4959(01)00507-3
  • Smith, R.L., Soeters, M.R., Wüst, R.C.I., & Houtkooper, R.H. (2018). Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocrine Reviews, 39(4), 489–517. https://doi.org/10.1210/er.2017-00211
  • Soderlund, D.M., Clark, J.M., Sheets, L.P., Mullin, L.S., Piccirillo, V.J., Sargent, D., ...& Weiner, M. L. (2002). Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology, 171(1), 3–59. https://doi.org/10.1016/S0300-483X(01)00569-8
  • Vaden, D. L., Gohil, V. M., Gu, Z., & Greenberg, M. L. (2005). Separation of yeast phospholipids using one-dimensional thin-layer chromatography. Analytical Biochemistry, 338(1), 162–164. https://doi.org/10.1016/j.ab.2004.11.020
  • Zhang, W. (2018). Global pesticide use: Profile, trend, cost / benefit and more. Proceedings of the International Academy of Ecology and Environmental Sciences, 8(1), 1–27.
There are 34 citations in total.

Details

Primary Language English
Subjects Aquatic Toxicology
Journal Section Research Articles
Authors

Murat Yolcu 0000-0003-3067-8755

Elif İpek Satar 0000-0002-7540-3686

Mehmet Başhan 0000-0002-1228-9548

Veysi Kızmaz 0000-0002-7864-5912

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Submission Date December 2, 2023
Acceptance Date December 30, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Yolcu, M., Satar, E. İ., Başhan, M., Kızmaz, V. (2023). Effect of Lambda-cyhalothrin on the Gill Phospholipid (PL) Subclass of Oreochromis niloticus. Commagene Journal of Biology, 7(2), 152-158. https://doi.org/10.31594/commagene.1399339