Research Article
BibTex RIS Cite

Aslanağzının (Antirrhinum majus L.) In vitro Çoğaltımı Yeniden Gözden Geçirildi: Bitki Büyüme Düzenleyicilerinin Etkileri Üzerine Bir Analiz

Year 2024, Volume: 8 Issue: 1, 37 - 45, 30.06.2024
https://doi.org/10.31594/commagene.1450579

Abstract

N6-(2-izopentenil)adenozin (IP) ve p-klorofenoksiasetik asidin (CPA) Antirrhinum majus’un çoğaltılması üzerindeki etkileri henüz aydınlatılmamıştır. Bu çalışma, bitki büyüme düzenleyicilerinin aslanağzı bitkisinde çoğaltım verimliliğini artırma üzerindeki etkilerini karşılaştırmaktadır. Fide gelişim aşamasında, 1.0 mg L-1'deki IP en yüksek çimlenme oranını (%91.11 ± 9.30) sağlamıştır. En yüksek sürgün sayısını (4.42 ± 0.30) 1.0 mg L-1'deki 6-benzilaminopürin (BAP) uygulaması verirken, 0.50 mg L-1 IP içeren ortam çimlenen tohumlardan sürgün uzamasını (3.80 ± 0.28 cm) tetiklemiştir. En yüksek yaprak (12.33 ± 1.77) ve kök (2.96 ± 0.32) sayısını 1.0 mg L-1 IP ile zenginleştirilmiş ortam vermiştir. Fide kök uzunluklarında en büyük artışı 0.50 mg L-1 IP uygulaması sağlamıştır (2.50 ± 0.31 cm). Sürgün çoğaltımı aşamasında, 1.0 mg L-1'deki thidiazuron (TDZ) en fazla sürgün sayısını verirken (nodal eksplant başına 10.04 ± 2.42), aynı konsantrasyondaki BAP uygulaması sürgün uzamasını tetiklemiştir (5.99 ± 0.29 cm). Köklenme aşamasında, 0.50 mg L-1 3-indol asetik asit (IAA) uygulaması en yüksek köklenme oranını (%100), kök üretimini (sürgün başına 4.93 ± 0.48) ve kök uzunluğunu (7.16 ± 0.97 cm) vermiştir. IAA uygulamaları kallus üretimini uyarmamıştır. Bununla birlikte, CPA uygulamaları sürekli olarak daha yüksek kallus oluşumu (%96 ve %100) teşvik etmiş ve son derece az bir köklenme yanıtı ile sonuçlanmıştır. Bulgular, kök gelişiminde bir kısıtlamaya neden olmadan fide gelişimini artırmak için IP, sürgün çoğaltımı verimliliğini artırmak için TDZ ve aslanağzında yüksek miktarda kallus üretimi için CPA kullanılmasını önermektedir.

Ethical Statement

Ethics committee approval is not required for this study

Project Number

-

References

  • Ahmed, M.R., & Anis, M. (2012). Role of TDZ in the quick regeneration of multiple shoots from nodal explant of Vitex trifolia L.—an important medicinal plant. Applied Biochemistry and Biotechnology, 168(5), 957-966. https://doi.org/10.1007/s12010-012-9799-0
  • Ahmed, Z.S., Salim, A.M., & Ahmed, H.N. (2022). Regeneration of Antirrhinum majus by nodes culture. International Journal of Agricultural and Statistical Sciences, 18(S1), 1487-1490.
  • Al-Ali, A.M., Dewir, Y.H., & Al-Obeed, R.S. (2023). Influence of cytokinins, dark incubation and air-lift bioreactor culture on axillary shoot proliferation of Al-Taif rose (Rosa damascena trigintipetala (Diek) R. Keller). Horticulturae, 9(10), 1109. https://doi.org/10.3390/horticulturae9101109
  • Arya, A., Sharma, V., Kumar Tyagia, P., Gola, D., & Husen, A. (2022). Role of cytokinins in adventitious root formation. In A. Husen (Ed.), Environmental, physiological and chemical controls of adventitious rooting in cuttings (pp. 239-249). Academic Press. https://doi.org/10.1016/B978-0-323-90636-4.00017-9
  • Atkinson, N.J., Newbury, H.J., & Ford-Lloyd, B.V. (1991). In vitro adventitious root induction in Antirrhinum majus L. Plant Cell, Tissue and Organ Culture, 27(1), 77-79. https://doi.org/10.1007/bf00048210
  • Bhargava, B., Gupta, Y.C., Dhiman, S.R., & Sharma, P. (2015). Effect of seed priming on germination, growth and flowering of snapdragon (Antirrhinum majus L.). National Academy Science Letters, 38(1), 81-85. https://doi.org/10.1007/s40009-014-0298-4
  • Cárdenas-Aquino, M.D., Camas-Reyes, A., Valencia-Lozano, E., López-Sánchez, L., Martínez-Antonio, A., & Cabrera-Ponce, J.L. (2023). The cytokinins BAP and 2-iP modulate different molecular mechanisms on shoot proliferation and root development in lemongrass (Cymbopogon citratus). Plants, 12(20), 3637. https://doi.org/10.3390/plants12203637
  • Cui, M., Takayanagi, K., & Handa, T. (2004). High frequency of shoot regeneration from hypocotyls and stem segments of Antirrhinum majus (Snapdragon). Plant Cell, Tissue and Organ Culture, 78(1), 51-53. https://doi.org/10.1023/b:ticu.0000020394.74766.af
  • Çelikel, F.G., Zhang, Q., Zhang, Y., Reid, M.S., & Jiang, C. (2021). A cytokinin analog thidiazuron suppresses shoot growth in potted rose plants via the gibberellic acid pathway. Frontiers in Plant Science, 12, 639717. https://doi.org/10.3389/fpls.2021.639717
  • Del Bianco, M., Giustini, L., & Sabatini, S. (2013). Spatiotemporal changes in the role of cytokinin during root development. New Phytologist, 199(2), 324-338. https://doi.org/10.1111/nph.12338 Efferth, T. (2019). Biotechnology applications of plant callus cultures. Engineering, 5(1), 50-59. https://doi.org/10.1016/j.eng.2018.11.006
  • Erland, L.A., Giebelhaus, R.T., Victor, J.M., Murch, S.J., & Saxena, P.K. (2020). The morphoregulatory role of thidiazuron: Metabolomics-guided hypothesis generation for mechanisms of activity. Biomolecules, 10(9), 1253. https://doi.org/10.3390/biom10091253
  • Gamborg, O., Miller, R., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  • Gonzalez-Benito, M.E., Tapia, J., Rodriguez, N., & Iriondo, J.M. (1996). Micropropagation of commercial and wild genotypes of snapdragon (Antirrhinum spp.). Journal of Horticultural Science, 71(1), 11-15. https://doi.org/10.1080/14620316.1996.11515377
  • Govindaraj, S. (2018). Thidiazuron: a potent phytohormone for in vitro regeneration. In N. Ahmad & M. Faisal (Eds.), Thidiazuron: From urea derivative to plant growth regulator (pp. 393-418). Springer. https://doi.org/10.1007/978-981-10-8004-3_22
  • Hamza, A., Abd El-Kafie, O., Helaly, A., & EL-Mongy, M. (2013). In vitro propagation methodes of snapdragon (Antirrhinum majus L.) plant. Journal of Plant Production, 4(11), 1621-1637. https://doi.org/10.21608/jpp.2013.74484
  • Hasemi, M., & Daneshvar, M.H. (2016). Regeneration from callus which is produced from cotyledon of Antirrhinum majus. Indo-American Journal of Agricultural and Veterinary Sciences, 4(1), 20-24.
  • Hill, K., & Schaller, G.E. (2013). Enhancing plant regeneration in tissue culture. Plant Signaling & Behavior, 8(10), e25709. https://doi.org/10.4161/psb.25709
  • Hoshino, Y., & Mii, M. (1998). Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L.) transformed by Agrobacterium rhizogenes. Plant Cell Reports, 17(4), 256-261. https://doi.org/10.1007/s002990050388
  • Jaiswal, J., Vikram Singh, A., Kumar Yadav, V., & Kumari, N. (2022). Plant tissue culture in tree species. In A. C. Rai, A. Kumar, A. Modi, & M. Singh (Eds.), Advances in plant tissue culture: Current developments and future trends (pp. 345-356). Academic Press. https://doi.org/10.1016/B978-0-323-90795-8.00020-5
  • Kang, J-S., & Choi, I. (2006). Effect of plant growth regulators and seed priming treatment on the germination and early growth of snapdragon (Antirrhinum majus L.). Journal of Life Science, 16(3), 493-499. https://doi.org/10.5352/jls.2006.16.3.493
  • Kepczynski, J. (1979). The improving of Antirrhinum majus seed germination. Acta Horticulturae, 91, 511-516. https://doi.org/10.17660/actahortic.1979.91.63
  • Kim, D., Kang, K., Enkhtaivan, G., Jan, U., & Sivanesan, I. (2019). Impact of activated charcoal, culture medium strength and thidiazuron on non-symbiotic in vitro seed germination of Pecteilis radiata (Thunb.) RAF. South African Journal of Botany, 124, 144-150. https://doi.org/10.1016/j.sajb.2019.04.015
  • Lee, J., Naing, A.H., Park, K.I., & Kim, C.K. (2023). Silver nitrate reduces hyperhydricity in shoots regenerated from the hypocotyl of snapdragon cv. Maryland Apple Blossom. Scientia Horticulturae, 308, 111593. https://doi.org/10.1016/j.scienta.2022.111593
  • Lewis, M., Stock, M., Maughan, T., Black, B., & Drost, D. (2021). Snapdragon Cut Flower Production in Utah. Utah State Universiy Extension Publications, Paper 2187. Published on the Internet; https://digitalcommons.usu.edu/extension_curall/2187 [Retrieved 05 January 2024].
  • Mehbub, H., Akter, A., Akter, M.A., Mandal, M.S., Hoque, M.A., Tuleja, M., & Mehraj, H. (2022). Tissue culture in ornamentals: Cultivation factors, propagation techniques, and its application. Plants, 11(23), 3208. https://doi.org/10.3390/plants11233208
  • Mizzotti, C., Galliani, B.M., & Masiero, S. (2014). The backstage of the ABC model: The Antirrhinum majus contribution. Plant Biosystems, 148(1), 176-186. https://doi.org/10.1080/11263504.2013.877531
  • Mulwa, R., & Bhalla, P. (2000). In vitro shoot multiplication of Macadamia tetraphylla L. Johnson. The Journal of Horticultural Science and Biotechnology, 75(1), 1-5. https://doi.org/10.1080/14620316.2000.11511192
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Newbury, H.J. (1986). Multiplication of Antirrhinum majus L. by shoot-tip culture. Plant Cell, Tissue and Organ Culture, 7(1), 39-42. https://doi.org/10.1007/bf00043919
  • Nikolić, R., Mitić, N., Miletić, R., & Nešković, M. (2006). Effects of cytokinins on in vitro seed germination and early seedling morphogenesis in Lotus corniculatus L. Journal of Plant Growth Regulation, 25(3), 187-194. https://doi.org/10.1007/s00344-005-0129-4
  • Ochatt, S.J., Beruto, M.I., Chan, M., Doyle Prestwich, B.M., Eimert, K., Lambardi, M., & Winkelmann, T. (2022). Biotechnology of ornamental plants: When beauty joins science—preface from the editors. Plant Cell, Tissue and Organ Culture, 149(3), 497-502. https://doi.org/10.1007/s11240-022-02330-4
  • Perrot-Rechenmann, C. (2010). Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspectives in Biology, 2(5), a001446-a001446. https://doi.org/10.1101/cshperspect.a001446
  • Phillips, G.C., & Garda, M. (2019). Plant tissue culture media and practices: An overview. In Vitro Cellular & Developmental Biology - Plant, 55(3), 242-257. https://doi.org/10.1007/s11627-019-09983-5
  • POWO (2023), “Antirrhinum majus L.” Plants of the World Online. The Royal Botanic Gardens, Kew. Published on the Internet; https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:799180-1 [Retrieved 05 January 2024].
  • Premi, N., Acemi, A., & Ozen, F. (2021). Cytokinin-like effects of chitosan on in vitro culture of Origanum vulgare L. Italus Hortus, 28(1), 100. https://doi.org/10.26353/j.itahort/2021.1.100108
  • Price, T. (1988). Seed sprout production for human consumption — A review. Canadian Institute of Food Science and Technology Journal, 21(1), 57-65. https://doi.org/10.1016/s0315-5463(88)70718-x
  • Radhakrishnan, R., Ramachandran, A., & Ranjitha Kumari, B.D. (2009). Rooting and shooting: Dual function of thidiazuron in in vitro regeneration of soybean (Glycine max. L). Acta Physiologiae Plantarum, 31(6), 1213-1217. https://doi.org/10.1007/s11738-009-0356-6
  • Raj, D., Kokotkiewicz, A., Drys, A., & Luczkiewicz, M. (2015). Effect of plant growth regulators on the accumulation of indolizidine alkaloids in Securinega suffruticosa callus cultures. Plant Cell, Tissue and Organ Culture, 123(1), 39-45. https://doi.org/10.1007/s11240-015-0811-6
  • Redhwan, A., Acemi, A., & Özen, F. (2023). Effects of plant growth regulators on in vitro seed germination, organ development and callogenesis in Pancratium maritimum L. Plant Cell, Tissue and Organ Culture, 154(1), 97-110. https://doi.org/10.1007/s11240-023-02514-6
  • Ryan, M.C., Stucky, M., Wakefield, C., Melott, J.M., Akbani, R., Weinstein, J.N., & Broom, B.M. (2020). Interactive clustered heat map builder: An easy web-based tool for creating sophisticated clustered heat maps. F1000Research, 8, 1750. https://doi.org/10.12688/f1000research.20590.2
  • Sangwan, R.S., & Harada, H. (1975). Chemical regulation of callus growth, organogenesis, plant regeneration, and somatic embryogenesis in Antirrhinum majus tissue and cell cultures. Journal of Experimental Botany, 26(6), 868-881. https://doi.org/10.1093/jxb/26.6.868
  • Saqallah, F.G., Hamed, W.M., Talib, W.H., Dianita, R., & Wahab, H.A. (2022). Antimicrobial activity and molecular docking screening of bioactive components of Antirrhinum majus (Snapdragon) aerial parts. Heliyon, 8(8), e10391. https://doi.org/10.1016/j.heliyon.2022.e10391
  • Schroeder, K.R., & Stimart, D.P. (1999). Adventitious shoot formation on excised hypocotyls of Antirrhinum majus L. (Snapdragon) in vitro. HortScience, 34(4), 736-739. https://doi.org/10.21273/hortsci.34.4.736
  • Seo, J., Lee, J., Yang, H.Y., & Ju, J. (2020). Antirrhinum majus L. flower extract inhibits cell growth and metastatic properties in human colon and lung cancer cell lines. Food Science & Nutrition, 8(11), 6259-6268. https://doi.org/10.1002/fsn3.1924
  • Sheyab, S., Shatnawi, M.A., Shibli, R.A., Obeidat, M., Al-Shadaideh, A.N., Alhussaen, K.M., Abu-Zahra, T. (2010). Micropropagation and medium term conservation of Antirrhinum majus L. Jordan Journal of Agricultural Sciences, 6(2), 171-182.
  • Shimasaki, K., & Fukumoto, Y. (1998). Effects of B vitamins and benzylaminopurine on adventitious shoot formation from hypocotyl segments of snapdragon (Antirrhinum majus L.). Plant Biotechnology, 15(4), 239-240. https://doi.org/10.5511/plantbiotechnology.15.239
  • Silva, V.N., Dotto, L., Hajar, A.D., Bittencourt, K.C., & Stella, M.R. (2017). Production of Antirrhinum majus seedlings on different substrates and containers. Científica, 45(2), 169. https://doi.org/10.15361/1984-5529.2017v45n2p169-174
  • Sivanesan, I., Lee, Y.K., Kang, K.W., & Park, H.Y. (2023). Micropropagation of Monstera deliciosa Liebm. ‘Thai Constellation’. Propagation of Ornamental Plants, 23(2), 31-38.
  • Stefaniak, A., & Grzeszczuk, M.E. (2019). Nutritional and biological value of five edible flower species. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 128-134. https://doi.org/10.15835/nbha47111136
  • Stirk, W.A., Gold, J.D., Novák, O., Strnad, M., & Staden, J.V. (2005). Changes in endogenous cytokinins during germination and seedling establishment of Tagetes minuta L. Plant Growth Regulation, 47(1), 1-7. https://doi.org/10.1007/s10725-005-1767-z
  • Wang, W., Rui, H., Yu, L., Jin, N., Liu, W., Guo, C., Cheng, Y., & Lou, Y. (2023). Four-chlorophenoxyacetic acid treatment induces the defense resistance of rice to white-backed planthopper Sogatella furcifera. International Journal of Molecular Sciences, 24(21), 15722. https://doi.org/10.3390/ijms242115722
  • Xiaofang, Z., Yafen, X., & Hongwei, L. (1992). Regulation of phytohormons on the regeneration of shoot-tips of Antirrhinum majus into plantlet in vitro. Journal of Northeast Forestry University, 3(1), 16-22. https://doi.org/10.1007/bf02874882
  • Yugay, Y.A., Grishchenko, O.V., Vasyutkina, E.A., Grigorchuk, V.P., Chukhlomina, E.N., Tsydeneshieva, Z.L., Kudinova, O.D., Yaroshenko, Y.L., Degtyarenko, A.I., Subbotin, E.P., Bulgakov, V.P., Kulchin, Y.N., & Shkryl, Y.N. (2023). Influence of growth regulators and different spectra of monochromatic radiation on the growth and biosynthetic characteristics of callus culture of Ipomoea batatas (L.) Lam. Russian Journal of Plant Physiology, 70(7). https://doi.org/10.1134/s1021443723603105
  • Yücesan, B.B., Mohammed, A., Arslan, M., & Gürel, E. (2015). Clonal propagation and synthetic seed production from nodal segments of Cape gooseberry (Physalis peruviana L.), a tropical fruit plant. Turkish Journal of Agriculture And Forestry, 39, 797-806. https://doi.org/10.3906/tar-1412-86

In vitro Propagation of Ornamental Snapdragon (Antirrhinum majus L.) Revisited: An Analysis on the Effects of Plant Growth Regulators

Year 2024, Volume: 8 Issue: 1, 37 - 45, 30.06.2024
https://doi.org/10.31594/commagene.1450579

Abstract

The effects of N6-(2-isopentenyl) adenosine (IP) and p-chlorophenoxyacetic acid (CPA) on the propagation of Antirrhinum majus have yet to be elucidated. This study compares plant growth regulators’ effects on enhancing propagation efficiency in snapdragon. In the seedling development phase, IP at 1.0 mg L-1 provided the highest germination ratio (91.11 ± 9.30%). The 6-benzylaminopurine (BAP) treatment at 1.0 mg L-1 gave the highest number of shoots (4.42 ± 0.30) whereas the medium with 0.50 mg L-1 IP triggered shoot elongation (3.80 ± 0.28 cm) from germinating seeds. The medium with 1.0 mg L-1 IP gave the highest number of leaves (12.33 ± 1.77) and roots (2.96 ± 0.32). IP treatment at 0.50 mg L-1 produced the greatest increase in seedling root lengths (2.50 ± 0.31 cm). In the shoot multiplication phase, thidiazuron (TDZ) at 1.0 mg L-1 gave the maximum number of shoots (10.04 ± 2.42 per nodal explant) while BAP treatment at the same concentration triggered shoot elongation (5.99 ± 0.29 cm). In the rooting phase, 3-indoleacetic acid (IAA) treatment at 0.50 mg L-1 induced the highest rooting rate (100%), root production (4.93 ± 0.48 per shoot), and root length (7.16 ± 0.97 cm). IAA treatments did not trigger callus production. However, the CPA treatments induced consistently higher callogenesis responses (96% and 100%), resulting in a minimal rooting response. The findings suggested using IP to increase seedling development without causing a restriction in root development, TDZ to improve shoot multiplication efficiency, and CPA to produce high-frequency calli production in ornamental snapdragon.

Project Number

-

References

  • Ahmed, M.R., & Anis, M. (2012). Role of TDZ in the quick regeneration of multiple shoots from nodal explant of Vitex trifolia L.—an important medicinal plant. Applied Biochemistry and Biotechnology, 168(5), 957-966. https://doi.org/10.1007/s12010-012-9799-0
  • Ahmed, Z.S., Salim, A.M., & Ahmed, H.N. (2022). Regeneration of Antirrhinum majus by nodes culture. International Journal of Agricultural and Statistical Sciences, 18(S1), 1487-1490.
  • Al-Ali, A.M., Dewir, Y.H., & Al-Obeed, R.S. (2023). Influence of cytokinins, dark incubation and air-lift bioreactor culture on axillary shoot proliferation of Al-Taif rose (Rosa damascena trigintipetala (Diek) R. Keller). Horticulturae, 9(10), 1109. https://doi.org/10.3390/horticulturae9101109
  • Arya, A., Sharma, V., Kumar Tyagia, P., Gola, D., & Husen, A. (2022). Role of cytokinins in adventitious root formation. In A. Husen (Ed.), Environmental, physiological and chemical controls of adventitious rooting in cuttings (pp. 239-249). Academic Press. https://doi.org/10.1016/B978-0-323-90636-4.00017-9
  • Atkinson, N.J., Newbury, H.J., & Ford-Lloyd, B.V. (1991). In vitro adventitious root induction in Antirrhinum majus L. Plant Cell, Tissue and Organ Culture, 27(1), 77-79. https://doi.org/10.1007/bf00048210
  • Bhargava, B., Gupta, Y.C., Dhiman, S.R., & Sharma, P. (2015). Effect of seed priming on germination, growth and flowering of snapdragon (Antirrhinum majus L.). National Academy Science Letters, 38(1), 81-85. https://doi.org/10.1007/s40009-014-0298-4
  • Cárdenas-Aquino, M.D., Camas-Reyes, A., Valencia-Lozano, E., López-Sánchez, L., Martínez-Antonio, A., & Cabrera-Ponce, J.L. (2023). The cytokinins BAP and 2-iP modulate different molecular mechanisms on shoot proliferation and root development in lemongrass (Cymbopogon citratus). Plants, 12(20), 3637. https://doi.org/10.3390/plants12203637
  • Cui, M., Takayanagi, K., & Handa, T. (2004). High frequency of shoot regeneration from hypocotyls and stem segments of Antirrhinum majus (Snapdragon). Plant Cell, Tissue and Organ Culture, 78(1), 51-53. https://doi.org/10.1023/b:ticu.0000020394.74766.af
  • Çelikel, F.G., Zhang, Q., Zhang, Y., Reid, M.S., & Jiang, C. (2021). A cytokinin analog thidiazuron suppresses shoot growth in potted rose plants via the gibberellic acid pathway. Frontiers in Plant Science, 12, 639717. https://doi.org/10.3389/fpls.2021.639717
  • Del Bianco, M., Giustini, L., & Sabatini, S. (2013). Spatiotemporal changes in the role of cytokinin during root development. New Phytologist, 199(2), 324-338. https://doi.org/10.1111/nph.12338 Efferth, T. (2019). Biotechnology applications of plant callus cultures. Engineering, 5(1), 50-59. https://doi.org/10.1016/j.eng.2018.11.006
  • Erland, L.A., Giebelhaus, R.T., Victor, J.M., Murch, S.J., & Saxena, P.K. (2020). The morphoregulatory role of thidiazuron: Metabolomics-guided hypothesis generation for mechanisms of activity. Biomolecules, 10(9), 1253. https://doi.org/10.3390/biom10091253
  • Gamborg, O., Miller, R., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  • Gonzalez-Benito, M.E., Tapia, J., Rodriguez, N., & Iriondo, J.M. (1996). Micropropagation of commercial and wild genotypes of snapdragon (Antirrhinum spp.). Journal of Horticultural Science, 71(1), 11-15. https://doi.org/10.1080/14620316.1996.11515377
  • Govindaraj, S. (2018). Thidiazuron: a potent phytohormone for in vitro regeneration. In N. Ahmad & M. Faisal (Eds.), Thidiazuron: From urea derivative to plant growth regulator (pp. 393-418). Springer. https://doi.org/10.1007/978-981-10-8004-3_22
  • Hamza, A., Abd El-Kafie, O., Helaly, A., & EL-Mongy, M. (2013). In vitro propagation methodes of snapdragon (Antirrhinum majus L.) plant. Journal of Plant Production, 4(11), 1621-1637. https://doi.org/10.21608/jpp.2013.74484
  • Hasemi, M., & Daneshvar, M.H. (2016). Regeneration from callus which is produced from cotyledon of Antirrhinum majus. Indo-American Journal of Agricultural and Veterinary Sciences, 4(1), 20-24.
  • Hill, K., & Schaller, G.E. (2013). Enhancing plant regeneration in tissue culture. Plant Signaling & Behavior, 8(10), e25709. https://doi.org/10.4161/psb.25709
  • Hoshino, Y., & Mii, M. (1998). Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L.) transformed by Agrobacterium rhizogenes. Plant Cell Reports, 17(4), 256-261. https://doi.org/10.1007/s002990050388
  • Jaiswal, J., Vikram Singh, A., Kumar Yadav, V., & Kumari, N. (2022). Plant tissue culture in tree species. In A. C. Rai, A. Kumar, A. Modi, & M. Singh (Eds.), Advances in plant tissue culture: Current developments and future trends (pp. 345-356). Academic Press. https://doi.org/10.1016/B978-0-323-90795-8.00020-5
  • Kang, J-S., & Choi, I. (2006). Effect of plant growth regulators and seed priming treatment on the germination and early growth of snapdragon (Antirrhinum majus L.). Journal of Life Science, 16(3), 493-499. https://doi.org/10.5352/jls.2006.16.3.493
  • Kepczynski, J. (1979). The improving of Antirrhinum majus seed germination. Acta Horticulturae, 91, 511-516. https://doi.org/10.17660/actahortic.1979.91.63
  • Kim, D., Kang, K., Enkhtaivan, G., Jan, U., & Sivanesan, I. (2019). Impact of activated charcoal, culture medium strength and thidiazuron on non-symbiotic in vitro seed germination of Pecteilis radiata (Thunb.) RAF. South African Journal of Botany, 124, 144-150. https://doi.org/10.1016/j.sajb.2019.04.015
  • Lee, J., Naing, A.H., Park, K.I., & Kim, C.K. (2023). Silver nitrate reduces hyperhydricity in shoots regenerated from the hypocotyl of snapdragon cv. Maryland Apple Blossom. Scientia Horticulturae, 308, 111593. https://doi.org/10.1016/j.scienta.2022.111593
  • Lewis, M., Stock, M., Maughan, T., Black, B., & Drost, D. (2021). Snapdragon Cut Flower Production in Utah. Utah State Universiy Extension Publications, Paper 2187. Published on the Internet; https://digitalcommons.usu.edu/extension_curall/2187 [Retrieved 05 January 2024].
  • Mehbub, H., Akter, A., Akter, M.A., Mandal, M.S., Hoque, M.A., Tuleja, M., & Mehraj, H. (2022). Tissue culture in ornamentals: Cultivation factors, propagation techniques, and its application. Plants, 11(23), 3208. https://doi.org/10.3390/plants11233208
  • Mizzotti, C., Galliani, B.M., & Masiero, S. (2014). The backstage of the ABC model: The Antirrhinum majus contribution. Plant Biosystems, 148(1), 176-186. https://doi.org/10.1080/11263504.2013.877531
  • Mulwa, R., & Bhalla, P. (2000). In vitro shoot multiplication of Macadamia tetraphylla L. Johnson. The Journal of Horticultural Science and Biotechnology, 75(1), 1-5. https://doi.org/10.1080/14620316.2000.11511192
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Newbury, H.J. (1986). Multiplication of Antirrhinum majus L. by shoot-tip culture. Plant Cell, Tissue and Organ Culture, 7(1), 39-42. https://doi.org/10.1007/bf00043919
  • Nikolić, R., Mitić, N., Miletić, R., & Nešković, M. (2006). Effects of cytokinins on in vitro seed germination and early seedling morphogenesis in Lotus corniculatus L. Journal of Plant Growth Regulation, 25(3), 187-194. https://doi.org/10.1007/s00344-005-0129-4
  • Ochatt, S.J., Beruto, M.I., Chan, M., Doyle Prestwich, B.M., Eimert, K., Lambardi, M., & Winkelmann, T. (2022). Biotechnology of ornamental plants: When beauty joins science—preface from the editors. Plant Cell, Tissue and Organ Culture, 149(3), 497-502. https://doi.org/10.1007/s11240-022-02330-4
  • Perrot-Rechenmann, C. (2010). Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspectives in Biology, 2(5), a001446-a001446. https://doi.org/10.1101/cshperspect.a001446
  • Phillips, G.C., & Garda, M. (2019). Plant tissue culture media and practices: An overview. In Vitro Cellular & Developmental Biology - Plant, 55(3), 242-257. https://doi.org/10.1007/s11627-019-09983-5
  • POWO (2023), “Antirrhinum majus L.” Plants of the World Online. The Royal Botanic Gardens, Kew. Published on the Internet; https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:799180-1 [Retrieved 05 January 2024].
  • Premi, N., Acemi, A., & Ozen, F. (2021). Cytokinin-like effects of chitosan on in vitro culture of Origanum vulgare L. Italus Hortus, 28(1), 100. https://doi.org/10.26353/j.itahort/2021.1.100108
  • Price, T. (1988). Seed sprout production for human consumption — A review. Canadian Institute of Food Science and Technology Journal, 21(1), 57-65. https://doi.org/10.1016/s0315-5463(88)70718-x
  • Radhakrishnan, R., Ramachandran, A., & Ranjitha Kumari, B.D. (2009). Rooting and shooting: Dual function of thidiazuron in in vitro regeneration of soybean (Glycine max. L). Acta Physiologiae Plantarum, 31(6), 1213-1217. https://doi.org/10.1007/s11738-009-0356-6
  • Raj, D., Kokotkiewicz, A., Drys, A., & Luczkiewicz, M. (2015). Effect of plant growth regulators on the accumulation of indolizidine alkaloids in Securinega suffruticosa callus cultures. Plant Cell, Tissue and Organ Culture, 123(1), 39-45. https://doi.org/10.1007/s11240-015-0811-6
  • Redhwan, A., Acemi, A., & Özen, F. (2023). Effects of plant growth regulators on in vitro seed germination, organ development and callogenesis in Pancratium maritimum L. Plant Cell, Tissue and Organ Culture, 154(1), 97-110. https://doi.org/10.1007/s11240-023-02514-6
  • Ryan, M.C., Stucky, M., Wakefield, C., Melott, J.M., Akbani, R., Weinstein, J.N., & Broom, B.M. (2020). Interactive clustered heat map builder: An easy web-based tool for creating sophisticated clustered heat maps. F1000Research, 8, 1750. https://doi.org/10.12688/f1000research.20590.2
  • Sangwan, R.S., & Harada, H. (1975). Chemical regulation of callus growth, organogenesis, plant regeneration, and somatic embryogenesis in Antirrhinum majus tissue and cell cultures. Journal of Experimental Botany, 26(6), 868-881. https://doi.org/10.1093/jxb/26.6.868
  • Saqallah, F.G., Hamed, W.M., Talib, W.H., Dianita, R., & Wahab, H.A. (2022). Antimicrobial activity and molecular docking screening of bioactive components of Antirrhinum majus (Snapdragon) aerial parts. Heliyon, 8(8), e10391. https://doi.org/10.1016/j.heliyon.2022.e10391
  • Schroeder, K.R., & Stimart, D.P. (1999). Adventitious shoot formation on excised hypocotyls of Antirrhinum majus L. (Snapdragon) in vitro. HortScience, 34(4), 736-739. https://doi.org/10.21273/hortsci.34.4.736
  • Seo, J., Lee, J., Yang, H.Y., & Ju, J. (2020). Antirrhinum majus L. flower extract inhibits cell growth and metastatic properties in human colon and lung cancer cell lines. Food Science & Nutrition, 8(11), 6259-6268. https://doi.org/10.1002/fsn3.1924
  • Sheyab, S., Shatnawi, M.A., Shibli, R.A., Obeidat, M., Al-Shadaideh, A.N., Alhussaen, K.M., Abu-Zahra, T. (2010). Micropropagation and medium term conservation of Antirrhinum majus L. Jordan Journal of Agricultural Sciences, 6(2), 171-182.
  • Shimasaki, K., & Fukumoto, Y. (1998). Effects of B vitamins and benzylaminopurine on adventitious shoot formation from hypocotyl segments of snapdragon (Antirrhinum majus L.). Plant Biotechnology, 15(4), 239-240. https://doi.org/10.5511/plantbiotechnology.15.239
  • Silva, V.N., Dotto, L., Hajar, A.D., Bittencourt, K.C., & Stella, M.R. (2017). Production of Antirrhinum majus seedlings on different substrates and containers. Científica, 45(2), 169. https://doi.org/10.15361/1984-5529.2017v45n2p169-174
  • Sivanesan, I., Lee, Y.K., Kang, K.W., & Park, H.Y. (2023). Micropropagation of Monstera deliciosa Liebm. ‘Thai Constellation’. Propagation of Ornamental Plants, 23(2), 31-38.
  • Stefaniak, A., & Grzeszczuk, M.E. (2019). Nutritional and biological value of five edible flower species. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 128-134. https://doi.org/10.15835/nbha47111136
  • Stirk, W.A., Gold, J.D., Novák, O., Strnad, M., & Staden, J.V. (2005). Changes in endogenous cytokinins during germination and seedling establishment of Tagetes minuta L. Plant Growth Regulation, 47(1), 1-7. https://doi.org/10.1007/s10725-005-1767-z
  • Wang, W., Rui, H., Yu, L., Jin, N., Liu, W., Guo, C., Cheng, Y., & Lou, Y. (2023). Four-chlorophenoxyacetic acid treatment induces the defense resistance of rice to white-backed planthopper Sogatella furcifera. International Journal of Molecular Sciences, 24(21), 15722. https://doi.org/10.3390/ijms242115722
  • Xiaofang, Z., Yafen, X., & Hongwei, L. (1992). Regulation of phytohormons on the regeneration of shoot-tips of Antirrhinum majus into plantlet in vitro. Journal of Northeast Forestry University, 3(1), 16-22. https://doi.org/10.1007/bf02874882
  • Yugay, Y.A., Grishchenko, O.V., Vasyutkina, E.A., Grigorchuk, V.P., Chukhlomina, E.N., Tsydeneshieva, Z.L., Kudinova, O.D., Yaroshenko, Y.L., Degtyarenko, A.I., Subbotin, E.P., Bulgakov, V.P., Kulchin, Y.N., & Shkryl, Y.N. (2023). Influence of growth regulators and different spectra of monochromatic radiation on the growth and biosynthetic characteristics of callus culture of Ipomoea batatas (L.) Lam. Russian Journal of Plant Physiology, 70(7). https://doi.org/10.1134/s1021443723603105
  • Yücesan, B.B., Mohammed, A., Arslan, M., & Gürel, E. (2015). Clonal propagation and synthetic seed production from nodal segments of Cape gooseberry (Physalis peruviana L.), a tropical fruit plant. Turkish Journal of Agriculture And Forestry, 39, 797-806. https://doi.org/10.3906/tar-1412-86
There are 54 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology, Plant Physiology
Journal Section Research Articles
Authors

Gizem Kıymaz This is me 0000-0003-3374-7058

Arda Acemi 0000-0003-0270-8507

Project Number -
Publication Date June 30, 2024
Submission Date March 10, 2024
Acceptance Date June 12, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Kıymaz, G., & Acemi, A. (2024). In vitro Propagation of Ornamental Snapdragon (Antirrhinum majus L.) Revisited: An Analysis on the Effects of Plant Growth Regulators. Commagene Journal of Biology, 8(1), 37-45. https://doi.org/10.31594/commagene.1450579