Research Article
BibTex RIS Cite

Detailed characterization of lectin genes in common bean using bioinformatic tools

Year 2022, Volume: 31 Issue: 1, 1 - 25, 30.06.2022

Abstract

Because of differences in molecular structure, biochemical properties, and carbohydrate binding specificity, lectins are considered a complex and heterogeneous group of proteins found in all organisms. Plant lectins are important proteins in terms of their benefits in cancer treatments, biomedical applications, and many medical uses due to their numerous biological roles such as intercellular interactions, defense mechanisms formation, immunomodulation, and anticarcinogenic activity. Despite the discovery of significant amounts of lectin proteins in different plant species, many questions about their potential biological role remain unanswered in P. vulgaris L. In this study, using bioinformatics tools, 52 Pvul-LEC genes were identified in the P. vulgaris genome and these genes were clustered into three subgroups based on phylogenetic analysis. The majority of Pvul-LEC proteins in the same subfamily of phylogenetic tree shared similar motifs and gene structures. Eight pairs of segmental duplications were discovered based on genome wide duplication analysis. Pvul-LEC proteins' three-dimensional structure and functions were also predicted. Simultaneously, gene expression levels of Pvul-LEC genes against drought and salt stress in leaf tissues were evaluated based on publicly available RNAseq data. As a result, it is anticipated that the data obtained in the current study will be beneficial to literature and following studies related to lectin genes.

References

  • Sharon, N., Lis, H., History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, 14 (2004), 53R-62R. https://doi.org/10.1093/glycob/cwh122.
  • Nareddy, P.K., Bobbili, K.B., Swamy, M.J., Purification, physico-chemical characterization and thermodynamics of chitooligosaccharide binding to cucumber (Cucumis sativus) phloem lectin, International Journal of Biological Macromolecules, 95 (2017), 910-919. https://doi.org/10.1016/j.ijbiomac.2016.10.078.
  • Ogawa, H., Date, K., The “white kidney bean incident” in Japan, Lectins, Springer, (2014), 39-45.
  • Vasconcelos, I.M., Oliveira, J.T.A., Antinutritional properties of plant lectins, Toxicon, 44 (2004), 385-403. https://doi.org/10.1016/j.toxicon.2004.05.005.
  • Van Holle, S., Van Damme, E.J., Signaling through plant lectins: modulation of plant immunity and beyond, Biochemical Society Transactions, 46 (2018), 217-233. https://doi.org/10.1042/BST20170371.
  • Brown, G.D., Willment, J.A., Whitehead, L., C-type lectins in immunity and homeostasis, Nature Reviews Immunology, 18 (2018), 374-389. https://doi.org/10.1038/s41577-018-0004-8
  • Rüdiger, H., Gabius, H.-J., Plant lectins: occurrence, biochemistry, functions and applications, Glycoconjugate journal, 18 (2001), 589-613. https://doi.org/10.1023/A:1020687518999.
  • Bittel, P., Robatzek, S., Microbe-associated molecular patterns (MAMPs) probe plant immunity, Current Opinion in Plant Biology, 10 (2007), 335-341. https://doi.org/10.1016/j.pbi.2007.04.021.
  • Vlot, A.C., Dempsey, M. A., Klessig, D.F., Salicylic acid, a multifaceted hormone to combat disease, Annual Review of Phytopathology, 47 (2009), 177-206. https://doi.org/10.1146/annurev.phyto.050908.135202.
  • Armijo, G., Salinas, P., Monteoliva, M.I., Seguel, A., García, C., Villarroel-Candia, E., Song W., van der Krol, A.R., Álvarez, M.E., Holuigue, L., A salicylic acid–induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1, Molecular Plant-Microbe Interactions, 26 (2013), 1395-1406. https://doi.org/10.1094/MPMI-02-13-0044-R.
  • Luo, X., Xu, N., Huang, J., Gao, F., Zou,H., Boudsocq, M., Coaker, G., Liu, J., A lectin receptor-like kinase mediates pattern-triggered salicylic acid signaling, Plant Physiology, 174 (2017), 2501-2514. https://doi.org/10.1104/pp.17.00404.
  • He, S., Shi, J., Walid, E. , Zhang, H., Ma, Y., Xue, S.J., Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): Optimisation of extraction conditions by response surface methodology, Food Chemistry, 166 (2015), 93-100. https://doi.org/10.1016/j.foodchem.2014.05.156.
  • Mazalovska, M., Kouokam, J.C., Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections, Biomed Research International, (2018). https://doi.org/10.1155/2018/3750646.
  • Fitches, E., Woodhouse, S.D., Edwards, J.P., Gatehouse, J.A., In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action, Journal of Insect Physiology, 47 (2001), 777-787. https://doi.org/10.1016/S0022-1910(01)00068-3
  • Miyake, K., Tanaka,T., McNeil, P.L., Lectin-based food poisoning: a new mechanism of protein toxicity, PloS One, 2 (2007), e687. https://doi.org/10.1371/journal.pone.0000687
  • Menard, S., Cerf-Bensussan, N., Heyman, M., Multiple facets of intestinal permeability and epithelial handling of dietary antigens, Mucosal Immunology, 3 (2010), 247-259. https://doi.org/10.1038/mi.2010.5
  • Lehr, C.-M., Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract, Critical Reviews In Therapeutic Drug Carrier Systems, 11 (1994), 119-160.
  • Zhang, J., Shi, J., Ilic, S., Xue, Jun., Kakuda, Y., Biological properties and characterization of lectin from red kidney bean (Phaseolus vulgaris), Food Reviews International, 25 (2008), 12-27. https://doi.org/10.1080/87559120802458115 Gabius, H.-J., André, S., Jiménez-Barbero, J., Romero, A., Solís, D., From lectin structure to functional glycomics: principles of the sugar code, Trends in biochemical sciences, 36 (2011), 298-313. https://doi.org/10.1016/j.tibs.2011.01.005
  • De Hoff, P.L., Brill, L.M., Hirsch, A.M., Plant lectins: the ties that bind in root symbiosis and plant defense, Molecular Genetics and Genomics, 282 (2009), 1-15. https://doi.org/10.1007/s00438-009-0460-8
  • Van der Poel, A., Effect of processing on antinutritional factors and protein nutritional value of dry beans (Phaseolus vulgaris L.). A review, Animal Feed Science and Technology, 29 (1990), 179-208.
  • Büyük, İ., Okay, A. Aksoy, T., Aras, S., The NIN-like Protein (NLP) Family in Common Bean: Genome-Wide Identificationn Evolution and Expression Analysis, Communications Faculty of Sciences University of Ankara Series C Biology, 30 (2021), 58-84. https://dergipark.org.tr/en/pub/communc/issue/58411/869501.
  • Hirsch, M., Phillips, S., Solnik, C., Black, P., Schwartz, R., Carpenter, C., Activation of leukemia viruses by graft-versus-host and mixed lymphocyte reactions in vitro, Proceedings of the National Academy of Sciences, 69 (1972), 1069-1072.
  • Koyanagi, Y., Miles, S., Mitsuyasu, R.T., Merrill, J.E., Vinters, H.V., Chen, I., Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms, Science, 236 (1987), 819-822.
  • Lajolo, F.M., Genovese M.I., Nutritional significance of lectins and enzyme inhibitors from legumes, Journal of Agricultural and Food Chemistry, 50 (2002), 6592-6598. https://doi.org/10.1021/jf020191k.
  • Woodley, J.F., Lectins for gastrointestinal targeting–15 years on, Journal of Drug Targeting, 7 (1999), 325-333. https://doi.org/10.3109/10611869909085515.
  • Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes,R.D., Fazo, J., Mitros,T., Dirks, W., Hellsten,U., Putnam, N., Phytozome: a comparative platform for green plant genomics, Nucleic Acids Research, 40 (2012), D1178-D1186. https://doi.org/10.1093/nar/gkr944.
  • Guo, A., Zhu, Q., Chen, X., Luo, J., GSDS: a gene structure display server, Yi chuan= Hereditas, 29 (2007), 1023-1026. https://doi.org/10.1360/yc-007-1023
  • Voorrips, R., MapChart: software for the graphical presentation of linkage maps and QTLs, Journal of Heredity, 93 (2002), 77-78. https://doi.org/10.1093/jhered/93.1.77
  • Bailey, T.L., Williams, N., Misleh. C., Li,W.W., MEME: discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Research, 34 (2006), W369-W373. https://doi.org/10.1093/nar/gkl198
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Molecular Biology and Evolution, 28 (2011), 2731-2739. https://doi.org/10.1093/molbev/msr121
  • Letunic, I., Bork, P., Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy, Nucleic Acids Research, 39 (2011), W475-W478. https://doi.org/10.1093/nar/gkr201
  • Zhang Y., miRU: an automated plant miRNA target prediction server, Nucleic acids research, 33 (2005), W701-W704. https://doi.org/10.1093/nar/gki383
  • Suyama, M., Torrents, D., Bork, P., PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments, Nucleic Acids Research, 34 (2006), W609-W612. https://doi.org/10.1093/nar/gkl315
  • Yang, Z., Nielsen, R., Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models, Molecular Biology and Evolution, 17 (2000), 32-43. https://doi.org/10.1093/oxfordjournals.molbev.a026236
  • Hiz, M.C., Canher, B., Niron, H., Turet, M., Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions, PloS One, 9 (2014), e92598. https://doi.org/10.1371/journal.pone.0092598
  • Büyük, İ., Inal, B., Ilhan, E., Tanriseven, M., Aras, S., Erayman, M., Genome-wide identification of salinity responsive HSP70 s in common bean, Molecular Biology Reports, 43 (2016), 1251-1266. https://doi.org/10.1007/s11033-016-4057-0
  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank, Nucleic Acids Research, 28 (2000), 235-242. https://doi.org/10.1093/nar/28.1.235
  • Kelley, L.A., Sternberg, M.J., Protein structure prediction on the Web: a case study using the Phyre server, Nature Protocols, 4 (2009), 363. https://doi.org/10.1038/nprot.2009.2.
  • Jiang, S.-Y., Ma, Z., Ramachandran, S., Evolutionary history and stress regulation of the lectin superfamily in higher plants, BMC Evolutionary Biology, 10 (2010), 1-24. https://doi.org/10.1186/1471-2148-10-79.
  • Kouno, T., Watanabe, N., Sakai, N., Nakamura, T., Nabeshima, Y., Morita, M., Mizuguchi, M., Aizawa, T., Demura, M., Imanaka, T., The structure of Physarum polycephalum hemagglutinin I suggests a minimal carbohydrate recognition domain of legume lectin fold, Journal of Molecular Biology, 405 (2011), 560-569. https://doi.org/10.1016/j.jmb.2010.11.024
  • Bouwmeester,K., Govers, F., Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles, Journal of Experimental Botany, 60 (2009), 4383-4396. https://doi.org/10.1093/jxb/erp277
  • Lis, H., Sharon, N., Lectins: carbohydrate-specific proteins that mediate cellular recognition, Chemical Reviews, 98 (1998), 637-674. https://doi.org/10.1021/cr940413g .
  • Gegg, C.V., Roberts, D.D., Segel,I.H., Etzler, M.E., Characterization of the adenine binding sites of two Dolichos biflorus lectins, Biochemistry, 31 (1992), 6938-6942. https://doi.org/10.1021/bi00145a011
  • Lv, D., Wang, G., Xiong, L.-R., Sun, J.-X., Chen, Y., Guo, C.-L., Yu, Y., He, H.-L., Cai, R., Pan, J.-S., Genome-wide identification and characterization of lectin receptor-like kinase gene family in cucumber and expression profiling analysis under different treatments, Genes, 11 (2020), 1032. https://doi.org/10.3390/genes11091032
  • Vaid, N., Pandey, P.K., Tuteja, N., Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice, Plant Molecular Biology, 80 (2012), 365-388. https://doi.org/10.1007/s11103-012-9952-8
  • Wang, Z., Ren, H., Xu, F., Lu, G., Cheng, W., Que, Y., Xu, L., Genome-Wide Characterization of Lectin Receptor Kinases in Saccharum spontaneum L. and Their Responses to Stagonospora tainanensis Infection, Plants, 10 (2021), 322.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M.R., Appel R.D., Bairoch, A., Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, (2005), 571-607. https://doi.org/10.1385/1-59259-890-0:571
  • Dang, L., Van Damme, E.J., Genome-wide identification and domain organization of lectin domains in cucumber, Plant Physiology and Biochemistry, 108 (2016), 165-176. https://doi.org/10.1016/j.plaphy.2016.07.009
  • Singh, P., Mishra A.K., Singh C.M., Genome-wide identification and characterization of Lectin receptor-like kinase (LecRLK) genes in mungbean (Vigna radiata L. Wilczek), Journal of Applied Genetics, (2021), 1-12. https://doi.org/10.1007/s13353-021-00613-8
  • Wang, Y., Wang, X., Paterson, A.H., Genome and gene duplications and gene expression divergence: a view from plants, Annals of the New York Academy of Sciences, 1256 (2012), 1-14. https://doi.org/10.1111/j.1749-6632.2011.06384.x
  • Le Hir, H., Nott, A., Moore, M.J., How introns influence and enhance eukaryotic gene expression, Trends in Biochemical Sciences, 28 (2003), 215-220. https://doi.org/10.1016/S0968-0004(03)00052-5
  • Rose, A., Intron-mediated regulation of gene expression, Nuclear pre-mRNA Processing in Plants, (2008), 277-290. https://doi.org/10.1007/978-3-540-76776-3_15
  • Liu, P.-L., Huang, Y., Shi, P.-H.,Yu,M., Xie, J.-B., Xie, L., Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean, Scientific Reports, 8 (2018), 1-14. https://doi.org/10.1038/s41598-018-24266-6
  • Carmel, L., Wolf, Y.I., Rogozin, I.B., Koonin, E.V., Three distinct modes of intron dynamics in the evolution of eukaryotes, Genome Research, 17 (2007), 1034-1044. http://www.genome.org/cgi/doi/10.1101/gr.6438607
  • Fierro-Monti, I., Mathews, M.B., Proteins binding to duplexed RNA: one motif, multiple functions, Trends in Biochemical Sciences, 25 (2000), 241-246. https://doi.org/10.1016/S0968-0004(00)01580-2
  • Richardson, J.S., Protein anatomy, Adv. Protein Chem, 34 (1981), 339. https://doi.org/10.1016/S0065-3233(08)60520-3
  • Orengo, C.A., Jones, D.T., Thornton, J.M., Protein superfamilles and domain superfolds, Nature, 372 (1994), 631-634. https://doi.org/10.1038/372631a0
  • Williams, A., Westhead, D., Sequence relationships in the legume lectin fold and other jelly rolls, Protein Engineering, 15 (2002), 771-774. https://doi.org/10.1093/protein/15.10.771
  • Yamaguchi-Shinozaki, K., Shinozaki, K., Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters, Trends in Plant Science, 10 (2005), 88-94. https://doi.org/10.1016/j.tplants.2004.12.012
  • Lu, X.-Y., Huang, X.-L., Plant miRNAs and abiotic stress responses, Biochemical and Biophysical Research Communications, 368 (2008), 458-462. https://doi.org/10.1016/j.bbrc.2008.02.007
  • Khraiwesh, B., Zhu, J.-K., Zhu, J., Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants, Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819 (2012), 137-148. https://doi.org/10.1016/j.bbagrm.2011.05.001
  • Tang, F., Chu, L., Shu, W., He, X., Wang, L., Lu, M., Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar, Plant Methods, 41 (2019), 28-37. https://doi.org/10.1186/s13007-019-0420-1
  • Matthewman, C.A., Kawashima, C.G., Húska, D., Csorba, T., Dalmay, T., Kopriva, S., miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis, FEBS Letters, 586 (2012), 3242-3248. https://doi.org/10.1016/j.febslet.2012.06.044
  • Jones-Rhoades, M.W., Bartel, D.P., Computational identification of plant microRNAs and their targets, including a stress-induced miRNA, Molecular Cell, 14 (2004), 787-799. https://doi.org/10.1016/j.molcel.2004.05.027
  • Cao, C., Long, R., Zhang, T., Kang, J., Wang, Z., Wang, P., Sun, H., Yu, J., Yang, Q., Genome-wide identification of microRNAs in response to salt/alkali stress in Medicago truncatula through high-throughput sequencing, International Journal of Molecular Sciences, 19 (2018), 4076. https://doi.org/10.3390/ijms19124076
  • Natarajan, B., Kalsi, H.S., Godbole, P., Malankar, N., Thiagarayaselvam,A., Siddappa, S., Thulasiram, H.V., Chakrabarti, S.K., Banerjee, A.K., MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato, Journal of Experimental Botany, 69 (2018), 2023-2036. https://doi.org/10.1093/jxb/ery025
  • Li, W., Wang, T., Zhang, Y., Li, Y., Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana, Journal of Experimental Botany, 67 (2016), 175-194. https://doi.org/10.1093/jxb/erv450
  • Shao, H.-B., Chu, L.-Y., Jaleel, C.A., Zhao, C.-X., Water-deficit stress-induced anatomical changes in higher plants, Comptes Rendus Biologies, 331 (2008), 215-225. https://doi.org/10.1016/j.crvi.2008.01.002
  • Zapata, P.J., Serrano, M., Pretel, M.T., Botella, M.A., Changes in free polyamine concentration induced by salt stress in seedlings of different species, Plant Growth Regulation, 56 (2008), 167-177. https://doi.org/10.1007/s10725-008-9298-z
Year 2022, Volume: 31 Issue: 1, 1 - 25, 30.06.2022

Abstract

References

  • Sharon, N., Lis, H., History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, 14 (2004), 53R-62R. https://doi.org/10.1093/glycob/cwh122.
  • Nareddy, P.K., Bobbili, K.B., Swamy, M.J., Purification, physico-chemical characterization and thermodynamics of chitooligosaccharide binding to cucumber (Cucumis sativus) phloem lectin, International Journal of Biological Macromolecules, 95 (2017), 910-919. https://doi.org/10.1016/j.ijbiomac.2016.10.078.
  • Ogawa, H., Date, K., The “white kidney bean incident” in Japan, Lectins, Springer, (2014), 39-45.
  • Vasconcelos, I.M., Oliveira, J.T.A., Antinutritional properties of plant lectins, Toxicon, 44 (2004), 385-403. https://doi.org/10.1016/j.toxicon.2004.05.005.
  • Van Holle, S., Van Damme, E.J., Signaling through plant lectins: modulation of plant immunity and beyond, Biochemical Society Transactions, 46 (2018), 217-233. https://doi.org/10.1042/BST20170371.
  • Brown, G.D., Willment, J.A., Whitehead, L., C-type lectins in immunity and homeostasis, Nature Reviews Immunology, 18 (2018), 374-389. https://doi.org/10.1038/s41577-018-0004-8
  • Rüdiger, H., Gabius, H.-J., Plant lectins: occurrence, biochemistry, functions and applications, Glycoconjugate journal, 18 (2001), 589-613. https://doi.org/10.1023/A:1020687518999.
  • Bittel, P., Robatzek, S., Microbe-associated molecular patterns (MAMPs) probe plant immunity, Current Opinion in Plant Biology, 10 (2007), 335-341. https://doi.org/10.1016/j.pbi.2007.04.021.
  • Vlot, A.C., Dempsey, M. A., Klessig, D.F., Salicylic acid, a multifaceted hormone to combat disease, Annual Review of Phytopathology, 47 (2009), 177-206. https://doi.org/10.1146/annurev.phyto.050908.135202.
  • Armijo, G., Salinas, P., Monteoliva, M.I., Seguel, A., García, C., Villarroel-Candia, E., Song W., van der Krol, A.R., Álvarez, M.E., Holuigue, L., A salicylic acid–induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1, Molecular Plant-Microbe Interactions, 26 (2013), 1395-1406. https://doi.org/10.1094/MPMI-02-13-0044-R.
  • Luo, X., Xu, N., Huang, J., Gao, F., Zou,H., Boudsocq, M., Coaker, G., Liu, J., A lectin receptor-like kinase mediates pattern-triggered salicylic acid signaling, Plant Physiology, 174 (2017), 2501-2514. https://doi.org/10.1104/pp.17.00404.
  • He, S., Shi, J., Walid, E. , Zhang, H., Ma, Y., Xue, S.J., Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): Optimisation of extraction conditions by response surface methodology, Food Chemistry, 166 (2015), 93-100. https://doi.org/10.1016/j.foodchem.2014.05.156.
  • Mazalovska, M., Kouokam, J.C., Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections, Biomed Research International, (2018). https://doi.org/10.1155/2018/3750646.
  • Fitches, E., Woodhouse, S.D., Edwards, J.P., Gatehouse, J.A., In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action, Journal of Insect Physiology, 47 (2001), 777-787. https://doi.org/10.1016/S0022-1910(01)00068-3
  • Miyake, K., Tanaka,T., McNeil, P.L., Lectin-based food poisoning: a new mechanism of protein toxicity, PloS One, 2 (2007), e687. https://doi.org/10.1371/journal.pone.0000687
  • Menard, S., Cerf-Bensussan, N., Heyman, M., Multiple facets of intestinal permeability and epithelial handling of dietary antigens, Mucosal Immunology, 3 (2010), 247-259. https://doi.org/10.1038/mi.2010.5
  • Lehr, C.-M., Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract, Critical Reviews In Therapeutic Drug Carrier Systems, 11 (1994), 119-160.
  • Zhang, J., Shi, J., Ilic, S., Xue, Jun., Kakuda, Y., Biological properties and characterization of lectin from red kidney bean (Phaseolus vulgaris), Food Reviews International, 25 (2008), 12-27. https://doi.org/10.1080/87559120802458115 Gabius, H.-J., André, S., Jiménez-Barbero, J., Romero, A., Solís, D., From lectin structure to functional glycomics: principles of the sugar code, Trends in biochemical sciences, 36 (2011), 298-313. https://doi.org/10.1016/j.tibs.2011.01.005
  • De Hoff, P.L., Brill, L.M., Hirsch, A.M., Plant lectins: the ties that bind in root symbiosis and plant defense, Molecular Genetics and Genomics, 282 (2009), 1-15. https://doi.org/10.1007/s00438-009-0460-8
  • Van der Poel, A., Effect of processing on antinutritional factors and protein nutritional value of dry beans (Phaseolus vulgaris L.). A review, Animal Feed Science and Technology, 29 (1990), 179-208.
  • Büyük, İ., Okay, A. Aksoy, T., Aras, S., The NIN-like Protein (NLP) Family in Common Bean: Genome-Wide Identificationn Evolution and Expression Analysis, Communications Faculty of Sciences University of Ankara Series C Biology, 30 (2021), 58-84. https://dergipark.org.tr/en/pub/communc/issue/58411/869501.
  • Hirsch, M., Phillips, S., Solnik, C., Black, P., Schwartz, R., Carpenter, C., Activation of leukemia viruses by graft-versus-host and mixed lymphocyte reactions in vitro, Proceedings of the National Academy of Sciences, 69 (1972), 1069-1072.
  • Koyanagi, Y., Miles, S., Mitsuyasu, R.T., Merrill, J.E., Vinters, H.V., Chen, I., Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms, Science, 236 (1987), 819-822.
  • Lajolo, F.M., Genovese M.I., Nutritional significance of lectins and enzyme inhibitors from legumes, Journal of Agricultural and Food Chemistry, 50 (2002), 6592-6598. https://doi.org/10.1021/jf020191k.
  • Woodley, J.F., Lectins for gastrointestinal targeting–15 years on, Journal of Drug Targeting, 7 (1999), 325-333. https://doi.org/10.3109/10611869909085515.
  • Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes,R.D., Fazo, J., Mitros,T., Dirks, W., Hellsten,U., Putnam, N., Phytozome: a comparative platform for green plant genomics, Nucleic Acids Research, 40 (2012), D1178-D1186. https://doi.org/10.1093/nar/gkr944.
  • Guo, A., Zhu, Q., Chen, X., Luo, J., GSDS: a gene structure display server, Yi chuan= Hereditas, 29 (2007), 1023-1026. https://doi.org/10.1360/yc-007-1023
  • Voorrips, R., MapChart: software for the graphical presentation of linkage maps and QTLs, Journal of Heredity, 93 (2002), 77-78. https://doi.org/10.1093/jhered/93.1.77
  • Bailey, T.L., Williams, N., Misleh. C., Li,W.W., MEME: discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Research, 34 (2006), W369-W373. https://doi.org/10.1093/nar/gkl198
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Molecular Biology and Evolution, 28 (2011), 2731-2739. https://doi.org/10.1093/molbev/msr121
  • Letunic, I., Bork, P., Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy, Nucleic Acids Research, 39 (2011), W475-W478. https://doi.org/10.1093/nar/gkr201
  • Zhang Y., miRU: an automated plant miRNA target prediction server, Nucleic acids research, 33 (2005), W701-W704. https://doi.org/10.1093/nar/gki383
  • Suyama, M., Torrents, D., Bork, P., PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments, Nucleic Acids Research, 34 (2006), W609-W612. https://doi.org/10.1093/nar/gkl315
  • Yang, Z., Nielsen, R., Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models, Molecular Biology and Evolution, 17 (2000), 32-43. https://doi.org/10.1093/oxfordjournals.molbev.a026236
  • Hiz, M.C., Canher, B., Niron, H., Turet, M., Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions, PloS One, 9 (2014), e92598. https://doi.org/10.1371/journal.pone.0092598
  • Büyük, İ., Inal, B., Ilhan, E., Tanriseven, M., Aras, S., Erayman, M., Genome-wide identification of salinity responsive HSP70 s in common bean, Molecular Biology Reports, 43 (2016), 1251-1266. https://doi.org/10.1007/s11033-016-4057-0
  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank, Nucleic Acids Research, 28 (2000), 235-242. https://doi.org/10.1093/nar/28.1.235
  • Kelley, L.A., Sternberg, M.J., Protein structure prediction on the Web: a case study using the Phyre server, Nature Protocols, 4 (2009), 363. https://doi.org/10.1038/nprot.2009.2.
  • Jiang, S.-Y., Ma, Z., Ramachandran, S., Evolutionary history and stress regulation of the lectin superfamily in higher plants, BMC Evolutionary Biology, 10 (2010), 1-24. https://doi.org/10.1186/1471-2148-10-79.
  • Kouno, T., Watanabe, N., Sakai, N., Nakamura, T., Nabeshima, Y., Morita, M., Mizuguchi, M., Aizawa, T., Demura, M., Imanaka, T., The structure of Physarum polycephalum hemagglutinin I suggests a minimal carbohydrate recognition domain of legume lectin fold, Journal of Molecular Biology, 405 (2011), 560-569. https://doi.org/10.1016/j.jmb.2010.11.024
  • Bouwmeester,K., Govers, F., Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles, Journal of Experimental Botany, 60 (2009), 4383-4396. https://doi.org/10.1093/jxb/erp277
  • Lis, H., Sharon, N., Lectins: carbohydrate-specific proteins that mediate cellular recognition, Chemical Reviews, 98 (1998), 637-674. https://doi.org/10.1021/cr940413g .
  • Gegg, C.V., Roberts, D.D., Segel,I.H., Etzler, M.E., Characterization of the adenine binding sites of two Dolichos biflorus lectins, Biochemistry, 31 (1992), 6938-6942. https://doi.org/10.1021/bi00145a011
  • Lv, D., Wang, G., Xiong, L.-R., Sun, J.-X., Chen, Y., Guo, C.-L., Yu, Y., He, H.-L., Cai, R., Pan, J.-S., Genome-wide identification and characterization of lectin receptor-like kinase gene family in cucumber and expression profiling analysis under different treatments, Genes, 11 (2020), 1032. https://doi.org/10.3390/genes11091032
  • Vaid, N., Pandey, P.K., Tuteja, N., Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice, Plant Molecular Biology, 80 (2012), 365-388. https://doi.org/10.1007/s11103-012-9952-8
  • Wang, Z., Ren, H., Xu, F., Lu, G., Cheng, W., Que, Y., Xu, L., Genome-Wide Characterization of Lectin Receptor Kinases in Saccharum spontaneum L. and Their Responses to Stagonospora tainanensis Infection, Plants, 10 (2021), 322.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M.R., Appel R.D., Bairoch, A., Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, (2005), 571-607. https://doi.org/10.1385/1-59259-890-0:571
  • Dang, L., Van Damme, E.J., Genome-wide identification and domain organization of lectin domains in cucumber, Plant Physiology and Biochemistry, 108 (2016), 165-176. https://doi.org/10.1016/j.plaphy.2016.07.009
  • Singh, P., Mishra A.K., Singh C.M., Genome-wide identification and characterization of Lectin receptor-like kinase (LecRLK) genes in mungbean (Vigna radiata L. Wilczek), Journal of Applied Genetics, (2021), 1-12. https://doi.org/10.1007/s13353-021-00613-8
  • Wang, Y., Wang, X., Paterson, A.H., Genome and gene duplications and gene expression divergence: a view from plants, Annals of the New York Academy of Sciences, 1256 (2012), 1-14. https://doi.org/10.1111/j.1749-6632.2011.06384.x
  • Le Hir, H., Nott, A., Moore, M.J., How introns influence and enhance eukaryotic gene expression, Trends in Biochemical Sciences, 28 (2003), 215-220. https://doi.org/10.1016/S0968-0004(03)00052-5
  • Rose, A., Intron-mediated regulation of gene expression, Nuclear pre-mRNA Processing in Plants, (2008), 277-290. https://doi.org/10.1007/978-3-540-76776-3_15
  • Liu, P.-L., Huang, Y., Shi, P.-H.,Yu,M., Xie, J.-B., Xie, L., Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean, Scientific Reports, 8 (2018), 1-14. https://doi.org/10.1038/s41598-018-24266-6
  • Carmel, L., Wolf, Y.I., Rogozin, I.B., Koonin, E.V., Three distinct modes of intron dynamics in the evolution of eukaryotes, Genome Research, 17 (2007), 1034-1044. http://www.genome.org/cgi/doi/10.1101/gr.6438607
  • Fierro-Monti, I., Mathews, M.B., Proteins binding to duplexed RNA: one motif, multiple functions, Trends in Biochemical Sciences, 25 (2000), 241-246. https://doi.org/10.1016/S0968-0004(00)01580-2
  • Richardson, J.S., Protein anatomy, Adv. Protein Chem, 34 (1981), 339. https://doi.org/10.1016/S0065-3233(08)60520-3
  • Orengo, C.A., Jones, D.T., Thornton, J.M., Protein superfamilles and domain superfolds, Nature, 372 (1994), 631-634. https://doi.org/10.1038/372631a0
  • Williams, A., Westhead, D., Sequence relationships in the legume lectin fold and other jelly rolls, Protein Engineering, 15 (2002), 771-774. https://doi.org/10.1093/protein/15.10.771
  • Yamaguchi-Shinozaki, K., Shinozaki, K., Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters, Trends in Plant Science, 10 (2005), 88-94. https://doi.org/10.1016/j.tplants.2004.12.012
  • Lu, X.-Y., Huang, X.-L., Plant miRNAs and abiotic stress responses, Biochemical and Biophysical Research Communications, 368 (2008), 458-462. https://doi.org/10.1016/j.bbrc.2008.02.007
  • Khraiwesh, B., Zhu, J.-K., Zhu, J., Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants, Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819 (2012), 137-148. https://doi.org/10.1016/j.bbagrm.2011.05.001
  • Tang, F., Chu, L., Shu, W., He, X., Wang, L., Lu, M., Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar, Plant Methods, 41 (2019), 28-37. https://doi.org/10.1186/s13007-019-0420-1
  • Matthewman, C.A., Kawashima, C.G., Húska, D., Csorba, T., Dalmay, T., Kopriva, S., miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis, FEBS Letters, 586 (2012), 3242-3248. https://doi.org/10.1016/j.febslet.2012.06.044
  • Jones-Rhoades, M.W., Bartel, D.P., Computational identification of plant microRNAs and their targets, including a stress-induced miRNA, Molecular Cell, 14 (2004), 787-799. https://doi.org/10.1016/j.molcel.2004.05.027
  • Cao, C., Long, R., Zhang, T., Kang, J., Wang, Z., Wang, P., Sun, H., Yu, J., Yang, Q., Genome-wide identification of microRNAs in response to salt/alkali stress in Medicago truncatula through high-throughput sequencing, International Journal of Molecular Sciences, 19 (2018), 4076. https://doi.org/10.3390/ijms19124076
  • Natarajan, B., Kalsi, H.S., Godbole, P., Malankar, N., Thiagarayaselvam,A., Siddappa, S., Thulasiram, H.V., Chakrabarti, S.K., Banerjee, A.K., MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato, Journal of Experimental Botany, 69 (2018), 2023-2036. https://doi.org/10.1093/jxb/ery025
  • Li, W., Wang, T., Zhang, Y., Li, Y., Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana, Journal of Experimental Botany, 67 (2016), 175-194. https://doi.org/10.1093/jxb/erv450
  • Shao, H.-B., Chu, L.-Y., Jaleel, C.A., Zhao, C.-X., Water-deficit stress-induced anatomical changes in higher plants, Comptes Rendus Biologies, 331 (2008), 215-225. https://doi.org/10.1016/j.crvi.2008.01.002
  • Zapata, P.J., Serrano, M., Pretel, M.T., Botella, M.A., Changes in free polyamine concentration induced by salt stress in seedlings of different species, Plant Growth Regulation, 56 (2008), 167-177. https://doi.org/10.1007/s10725-008-9298-z
There are 69 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Aybüke Okay 0000-0002-6772-4316

Sumer Aras 0000-0003-3474-9493

İlker Büyük 0000-0002-0843-8299

Publication Date June 30, 2022
Acceptance Date February 22, 2022
Published in Issue Year 2022 Volume: 31 Issue: 1

Cite

Communications Faculty of Sciences University of Ankara Series C-Biology.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.