Research Article
BibTex RIS Cite

Design and Testing of Flexibility Sensors to be Used in Agricultural Engineering Applications

Year 2020, Volume: 8 Issue: 2, 271 - 276, 29.12.2020
https://doi.org/10.33202/comuagri.726746

Abstract

Flexibility sensors are used to measure bending response of flexible materials which are employed in different technologies. They can be produced with easily available and low-cost materials. Its compactness, lightness and low power consumption makes this sensor ideal for manifold as well as any applications needs to monitor changes in shape or bending behavior. In this paper essential steps needed to design a custom-made, longer and cost effective flex sensor are discussed. It was found that selection of resistor, temperature dependency, and maximum possible length are major criteria to be considered. The best resistor yields the widest range was determined to be 100 Ω with maximum length of 75 cm. Another important finding of the study was the need of temperature compensation.

References

  • Adnan, N.H., Khairunizam, W.A.N., Shahriman, A.B., Zaaba, S.K., Basah, S.N., Zuradzman, M., Razlan, D., Hazry, M., Nasir, Ayob., Rudzuan, M.N., Aziz, A.A. 2012. Measurement of the Flexible Bending Force of the Index and Middle Fingers for Virtual Interaction. Procedia Engineering. 41( 2012 ):388 – 394.
  • Al-Fakih, E., Abu Osman, N.A. and Mahamd Adikan, F.R. 2012. The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: The state-of-the-art and ongoing research topics. Sensors. 12:12890–926.
  • Beth, T., Boesnach, I., Haimerl, M., Moldenhauer, .J, Bös, K. and Wank, V. 2003. Characteristics in human motion–from acquisition to analysis. IEEE Int. Conf. on Humanoid Robots pp 56–75.
  • Beyaz, A. 2017. Posture determination by using flex sensor and image analysis technique. Agric. Sci. Digest. 37(4) 2017: 257-262.
  • Bonnet, S. and Héliot, R. 2007. A magnetometer-based approach for studying human movements. IEEE Trans. Biomed. Eng. 54:1353–5.
  • Kizil Ü., İnalpulat M., Genç L. 2011. Elektronik burun sistemlerinin tasarım ilkeleri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi. (25):109-118.
  • Luinge, H.J., Veltink, P.H. and Baten, C.T.M. 2007. Ambulatory measurement of arm orientation. J. Biomech. 40:78–85.
  • Megalingam, R.K., Vivek, G.V., Bandyopadhyay, S. and Rahi, M.J. 2017. Robotic arm design, development and control for agriculture applications. 2017 International Conference on Advanced Computing and Communication Systems (ICACCS -2017), Jan. 06 – 07, 2017, Coimbatore, INDIA
  • Nisar, O., Imtiaz, M.A., Hussain, S. and Saleem, O. 2014. Performance optimization of a Flex sensor based glove for hand gestures recognition and translation. International Journal of Engineering Research & Technology.3(5): 1565 – 1570.
  • Özkan, S.S., Karayel, D., Atalı, G. and Gökbayrak, İ. 2017. Robot hand design and implementation based on flexible sensor controlled. J. of Eng. and Sci. 5-3(2017): 35 – 40.
  • Preethichandra, D.M.G. and Kaneto, K. 2007. SAW sensor network fabricated on a Polyvinylidine difluoride (PVDF) substrate for dynamic surface profile sensing. Sensors J., IEEE. 7:646–9.
  • Shanmugam, M., Ramasamy, A., Paramasivam, S. and Prabhakaran, P. 2016. Monitoring the turmeric finger disease and growth characteristics using sensor based embedded system -a novel method. Circuits and Systems. 2016(7): 1280-1296.
  • Saggio, G., Quitadamo, L.R. and Albero, L. 2014. Development and evaluation of a novel low-cost sensor-based knee flexion angle measurement system. The Knee. 21:896–901.
  • Saggio, G., Riillo, F., Sbernini, L. and Quitadamo, L.R. 2016. Resistive flex sensors: a survey. Smart Mater. Struct. 25 (2016): 013001 (30pp).
  • Sarkate, S.P. 2019. Develop very low cost flex sensor using Aluminum (Al) foil paper. Int. J.of Creative and Inn. Res. In All Studies. 1(11): 12-15.
  • Shrivastava, P., Singh, A., Singh, KP. And Srivastava, A. 2015. Mobile controlled agricultural device for enhanced execution of farming techniques. Procedia Computer Science. 49:306-312
  • Williamson, R. and Andrews, B.J. 2001. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Medical and Biological Engineering and Computing. 39:294–302.
  • Xiong, J. and Lee, P.S. 2019. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Science and Technology of Advanced Materials. 20(1): 837 857.
  • Zhang, C.H., Yang, Y., Zhou, C.J., Shu, Y., Tian, H., Wang, Z., Xue, Q.T. and Ren, T.L. 2013. Wafer-scale flexible surface acoustic wave devices based on an AlN/Si structure. Chin. Phys. Lett. 30:077701

Ziraat Mühendisliği Uygulamalarında Kullanılabilecek Esneklik Sensörlerinin Tasarımı ve Testi

Year 2020, Volume: 8 Issue: 2, 271 - 276, 29.12.2020
https://doi.org/10.33202/comuagri.726746

Abstract

Esneklik sensörleri, farklı teknolojilerde kullanılan esnek malzemelerin bükülmeye karşı verdikleri tepkileri ölçmek için kullanılırlar. Kolayca temin edilebilir ve düşük maliyetli malzemelerle üretilebilirler. Kompaktlığı, hafifliği ve düşük güç tüketimi, bu sensörü şekillendirme veya bükme davranışındaki değişiklikleri izlemek için gereken tüm uygulamaların yanı sıra manifold tasarımları için ideal kılar. Bu çalışmada özel üretim, daha uzun ve düşük maliyetli bir esneklik sensör tasarımı için gerekli adımlar tartışılmıştır. Direnç seçiminin, sıcaklığa bağlılığın ve mümkün olan maksimum uzunluğun dikkate alınması gereken ana kriterler olduğu belirlenmiştir. En geniş sensor çıktı aralığını veren resizstansın maksimum 75 cm uzunluğundaki bir sensör için 100 Ω olduğu belirlenmiştir. Çalışmanın bir diğer önemli bulgusu, sıcaklık kompansasyonu gereksinimidir.

References

  • Adnan, N.H., Khairunizam, W.A.N., Shahriman, A.B., Zaaba, S.K., Basah, S.N., Zuradzman, M., Razlan, D., Hazry, M., Nasir, Ayob., Rudzuan, M.N., Aziz, A.A. 2012. Measurement of the Flexible Bending Force of the Index and Middle Fingers for Virtual Interaction. Procedia Engineering. 41( 2012 ):388 – 394.
  • Al-Fakih, E., Abu Osman, N.A. and Mahamd Adikan, F.R. 2012. The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: The state-of-the-art and ongoing research topics. Sensors. 12:12890–926.
  • Beth, T., Boesnach, I., Haimerl, M., Moldenhauer, .J, Bös, K. and Wank, V. 2003. Characteristics in human motion–from acquisition to analysis. IEEE Int. Conf. on Humanoid Robots pp 56–75.
  • Beyaz, A. 2017. Posture determination by using flex sensor and image analysis technique. Agric. Sci. Digest. 37(4) 2017: 257-262.
  • Bonnet, S. and Héliot, R. 2007. A magnetometer-based approach for studying human movements. IEEE Trans. Biomed. Eng. 54:1353–5.
  • Kizil Ü., İnalpulat M., Genç L. 2011. Elektronik burun sistemlerinin tasarım ilkeleri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi. (25):109-118.
  • Luinge, H.J., Veltink, P.H. and Baten, C.T.M. 2007. Ambulatory measurement of arm orientation. J. Biomech. 40:78–85.
  • Megalingam, R.K., Vivek, G.V., Bandyopadhyay, S. and Rahi, M.J. 2017. Robotic arm design, development and control for agriculture applications. 2017 International Conference on Advanced Computing and Communication Systems (ICACCS -2017), Jan. 06 – 07, 2017, Coimbatore, INDIA
  • Nisar, O., Imtiaz, M.A., Hussain, S. and Saleem, O. 2014. Performance optimization of a Flex sensor based glove for hand gestures recognition and translation. International Journal of Engineering Research & Technology.3(5): 1565 – 1570.
  • Özkan, S.S., Karayel, D., Atalı, G. and Gökbayrak, İ. 2017. Robot hand design and implementation based on flexible sensor controlled. J. of Eng. and Sci. 5-3(2017): 35 – 40.
  • Preethichandra, D.M.G. and Kaneto, K. 2007. SAW sensor network fabricated on a Polyvinylidine difluoride (PVDF) substrate for dynamic surface profile sensing. Sensors J., IEEE. 7:646–9.
  • Shanmugam, M., Ramasamy, A., Paramasivam, S. and Prabhakaran, P. 2016. Monitoring the turmeric finger disease and growth characteristics using sensor based embedded system -a novel method. Circuits and Systems. 2016(7): 1280-1296.
  • Saggio, G., Quitadamo, L.R. and Albero, L. 2014. Development and evaluation of a novel low-cost sensor-based knee flexion angle measurement system. The Knee. 21:896–901.
  • Saggio, G., Riillo, F., Sbernini, L. and Quitadamo, L.R. 2016. Resistive flex sensors: a survey. Smart Mater. Struct. 25 (2016): 013001 (30pp).
  • Sarkate, S.P. 2019. Develop very low cost flex sensor using Aluminum (Al) foil paper. Int. J.of Creative and Inn. Res. In All Studies. 1(11): 12-15.
  • Shrivastava, P., Singh, A., Singh, KP. And Srivastava, A. 2015. Mobile controlled agricultural device for enhanced execution of farming techniques. Procedia Computer Science. 49:306-312
  • Williamson, R. and Andrews, B.J. 2001. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Medical and Biological Engineering and Computing. 39:294–302.
  • Xiong, J. and Lee, P.S. 2019. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Science and Technology of Advanced Materials. 20(1): 837 857.
  • Zhang, C.H., Yang, Y., Zhou, C.J., Shu, Y., Tian, H., Wang, Z., Xue, Q.T. and Ren, T.L. 2013. Wafer-scale flexible surface acoustic wave devices based on an AlN/Si structure. Chin. Phys. Lett. 30:077701
There are 19 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Sefa Aksu 0000-0002-2348-4082

Ünal Kızıl 0000-0002-8512-3899

Publication Date December 29, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Aksu, S., & Kızıl, Ü. (2020). Design and Testing of Flexibility Sensors to be Used in Agricultural Engineering Applications. ÇOMÜ Ziraat Fakültesi Dergisi, 8(2), 271-276. https://doi.org/10.33202/comuagri.726746