Research Article
BibTex RIS Cite

Kuraklık Stresi Koşullarında Yetiştirilen Soya Fasulyesinin (Glycine max L.) Bazı Fizyolojik Özellikleri Üzerine Rizobacterium (PGPR) Uygulamalarının Etkisi

Year 2021, Volume: 9 Issue: 2, 359 - 368, 21.12.2021
https://doi.org/10.33202/comuagri.881226

Abstract

Deneme, Tesadüf Parselleri Deneme Deseni’ ne göre faktöriyel düzende 4 tekerrürlü olarak yürütülmüştür. Araştırmada soya fasulyesi (Glycine max L.) türüne ait Arısoy çeşidi kullanılmıştır. Denemede, 4 farklı rizobakteri izolatı (Kontrol (B0), Azospirillum lipoferum (1x106 kob/ml), Bacillus megaterium (1x105 kob/ml) ve bir adet mikro yeşil alg (Chlorella saccharophilia (2x104 kob/ml)) ile üç farklı kuraklık seviyesinin (normal sulama (K1), ½ azaltılmış (K2) ve 3/4 azaltılmış (K3)) soyanın bazı fizyolojik özellikleri üzerine etkilerinin incelenmesi amaçlanmıştır. Araştırmada yaprak alan indeksi (cm2), klorofil oranı (µg/cm2), yaprak dokularında iyon sızıntısı (%), yaprak dokularında membran dayanıklılık indeksi (%), yaprak sıcaklığı (°C) yaprak dokularında bağıl su içeriği (%) ve malondialdehit (nmol/g), gibi özellikler incelenmiştir. Araştırma sonucuna göre, artan kuraklık stresi yaprak dokularında iyon sızıntısı, yaprak sıcaklığı ve malondialdehit miktarı dışında incelenen diğer özellikler üzerinde azalmalara neden olmuştur. Bununla birlikte, rizobakteri uygulamaları ile incelenen bu özellikler üzerinde stresin olumsuz etkisini azaltıcı ve düzenleyici etkileri olduğu tespit edilmiştir.

References

  • Kaynaklar Aslam, M.U., Raza, M. A. S., Saleem, M.F., Waqas, M., Iqbal, R., Ahmad, S., Haider, I., 2020. Improving strategic growth stage-based drought tolerance in quinoa by rhizobacterial inoculation. Community Soil Science Plant Anal., 51(5):1-16.
  • Araujo, F. F., Henning, A.A., Hungria, M., 2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World Journal of Micro- biology and Biotechnology, 21:1639–1645.
  • Arora A, Sairam, R.K., Srivastava, G.C., 2002. Oxidative stress and antioxidative systems in plants. Curr. Science, 82: 1227-1238.
  • Bat, M., Tunçtürk, R., Tunçtürk, M., 2019. Kuraklık stresi altındaki ekinezya (Echinacea purpurea L.)’ da deniz yosununun büyüme parametreleri, toplam fenolik ve antioksidan madde üzerine etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (3): 496-505.
  • Blokhina, O., Virolainen, E., Fagerstedt, K.V., 2003. Antioxidants, oxidative damage and oxygen deprivation stres Annual Botany, 91: 179-194.
  • Blum, A., 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112(2-3): 119-123.
  • Catola, S., Marino, G., Emiliani, G., Hüseynovai T., Musayev, M., Akparov, Z., Maserati, B.E., 2016. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta. 243: 441–449.
  • Chaves, M. M., J. S. Pereira, J. Maroco. M. L. Rodrigues, C. P. P. Ricardo, M. L. Osorio, I. Carvalho, T. Faria, Pinheiro, C., 2002. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot. 89: 970-916.
  • Cosgrove, D., 1986. Biophysical control of plant cell growth. Annual Review Plant Physiol., 37: 377–405.
  • Çakmakçı, R., Erat, M., Erdoğan, Ü., Dönmez, F., 2007. The influence of plant growth promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soilscience, 170: 288-295.
  • Dalal, M., Dani, R.G., Kumar P.A., 2006. Current trends in the genetic engineering of vegetable crops. Scientia Horticulturae, 107: 215–225.
  • Denby, K., Gehring, C., 2005. Engineering drought and salinity tolerance in plants: lessons from genome-wide ex- pression profiling in arabidopsis. Trends in Biotechnology, 23:11, 547-552.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz F 1987. Research and experimental methods. Statistical Methods-II. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 1:1021-1295.
  • Harman, G.E., Howell, C.R., Voterbo, A., Chet, I., Lordto, M., 2004. Trichoderma species: opportunistic, a virulent plant symbionts. Nat Rev Microbiol. 2: 43-56.
  • Gill S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930.
  • Glick, B.R., 1995. The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 41:109-114.
  • Heath, R.L., Packer, L., 1968. Photoperoxidation in isolate chloroplast.i. kinetics and stoichmetryof fatty acid peroxidation. Arch. Biochem. Biophys, 125: 189-198.
  • Huo, Y., Wang, M., Wei, Y., Xia, Z., 2016. Overexpression of the maize psb A gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco. Front Plant Sci., 6:1223.
  • Inbar, J., Abramsky, M, Cohen, D., Chet, I., 1994. Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions.European J. Pl. Pathol. 100: 337-346.
  • Kazakov, E.A., Kazakova, S.M., Gulyaev, B.I., 1988. Effect of soil moisture on formation and necrosis of sugar beet leaf apparatus. Fiziologiya i Biockimiya Kul turnykh, Rastenii. 20: 431-438.
  • Kijne, J.W., 2006. Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Research, 97: 3–18.
  • Jodeh, S., Alkowni, R., Hamed, R., Samhan, S., 2015. The study of electrolyte leakage from barley (Hordeum vulgare L) and pearlmillet using plant growth promotion (PGPR) and reverse osmosis. J. Food Nutr. Res. 3, 422–429. doi: 10.12691/jfnr-3-7-3.
  • Lin, C.S., Wu, J.T., 2014. Tolerance of soil algae and cyanobacteria to drought stress. J Phycol, 50(1):131-9.
  • Li, H., Zhao, Y., Jiang, X., 2019. Seed soaking with Bacillus sp. strain HX-2 alleviates negative effects of drought stress on maize seedlings. Chilian Journal Agriculture Researches,79:3.
  • Malua, E., Vassilev, N., 2014. A contribution to set a legal framework for bio fertilisers. Applied Microbiology and Biotechnology, 98: 6599–6607.
  • Marulanda A, Barea JM, Azco´n R., 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28:115–124.
  • Mohammadian, R., Moghaddam, M., Rahimian, H., Sadeghian, S.Y., 2005. Effect of Early Season Drought Stress on Growth Characteristics of Sugar Beet Genotypes. Turk J Agric For 29: 357-368.
  • Mullet, J. E. and M. S. Whitsitt. 1996. Plant cellular responses to water deficit. Plant Growth Regul. 20: 119-124.
  • Naveed, M., Hussain, M.B., Zahir, A.Z., Mitter, B., Sessitsch, A., 2014. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73:121– 131.
  • Nordstedt, N.P., Jones, M.L., 2020. Isolation of rhizosphere bacteria that improve quality and water stress toleran- ce in greenhouse ornamentals. Front. Plant Sci. 11:826. doi: 10.3389/fpls.2020.00826.
  • Gaber, M. A., 2011. Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Sci. 180, 540–547 .
  • Goddijn O.J.M., Verwoerd T.C., Voogd E., Krutwagen P.W.H.H., Degraaf P.T.H.M., Poels J., Vandun K., Ponst, A.S., Damm B., Pen J., 1997. Inhibition of trehalase activity enhances trehalose accumulation in trans- genic plants, Plant Physiol. 113, 181–190.
  • Öztürk, İ., Korkut, K.Z., 2017. Kuraklığın buğdayın kök ağırlığına etkisi ve kökün bazı fizyolojik parametrelerle ilişkisi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 2018, 27 (1): 14−24.
  • Patiwal, C., Mitra, M., Bhayani, K., SV, V. B., 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244: 1216–1226.
  • Premchandra G.S, Saneoka, A., Ogato, S., 1990. Cell Membrane stability and indicator of drought tolerance, as affected by applied nitrogen in soybean. Journal of Agriculture Science,115: 63- 66.
  • Samancıoğlu, A., Yıldırım, E., 2015. Bitki gelişimini teşvik eden bakteri uygulamalarının bitkilerde kuraklığa toleransı arttırmadaki etkileri, Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 20(1):72-79.
  • Sarma, R.K., Saikia, R., 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GG- RJ21 Plant Soil, 377:111–126.
  • Sairam RK, Saxena, D.C., 2000. Oxidative stress and antioksidants in wheat genotypes: possible mechanism of water stres tolerance. J. Agron. 13-18:223 p.
  • El-Sayed, S., El-Mohsen Ramadan, A.A., Hellal, F., 2020. Drought stress mitigation by application of algae extract on peanut grown under sandy soil conditions. Asian Journal of Plant Sciences, 19: 230-239.
  • Sreenivasulu, N., B. Grimm, Wobus, U., Weschke, W., 2000. Differential response of antioxidant compounds to salinity stress in salt-tolerant and saltsensitive seedlings of foxtail millet (Setaria italica). Physiol. Plant., 109: 435-442.
  • Shackel, K.A., Matthews, M.A., Morrison, J.C., 1987. Dynamic relation between expansion and cellular turgor in growing grape (Vitis vinifera L.) leaves. Plant Physiol., 84:1166–1171.
  • Tiwari, S., Lata, C., Chauhan, P. S., Nautiyal, C. S., 2016. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol. Biochem. 99, 108–117. doi: 10.1016/j.plaphy.2015.11.001.
  • Yedidia I, Srivastva AK, Kapulnik Y, Chet, I., 2001. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil. 235: 235-242.
  • Valentovic, P., Luxova, M., Kolarovic, l., Gasparikova, O., 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ., 52(4): 186-191.
  • Vardharajula, S., Ali, S. Z., Grover, M., Reddy, G., Bandi, V., 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6, 1–14. doi: 10.1080/17429145.2010.535178.
  • Vinocur, B, Altman, A., 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16:123– 132.
  • Wu, D., Wang, G., 2000. Interaction of CO2 enrichment and drought on growth, water use, and yield of broad bean (Vicia faba L.). Environmental and Experimental Botany, 43: 131–139.
  • Wingler A., 2002.The function of trehalose biosynthesis in plants, Phytochemistry 60: 437– 440.
  • Zhang, W., Xie, Z., Zhang, X., LanG, D., Zhang, X., 2019. Growth-promoting bacteria alleviates drought stress of G. uralensis through improving photosynthesis characteristics and water status. Journal of Plant Interactions, 14 (1):580-589.
Year 2021, Volume: 9 Issue: 2, 359 - 368, 21.12.2021
https://doi.org/10.33202/comuagri.881226

Abstract

References

  • Kaynaklar Aslam, M.U., Raza, M. A. S., Saleem, M.F., Waqas, M., Iqbal, R., Ahmad, S., Haider, I., 2020. Improving strategic growth stage-based drought tolerance in quinoa by rhizobacterial inoculation. Community Soil Science Plant Anal., 51(5):1-16.
  • Araujo, F. F., Henning, A.A., Hungria, M., 2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World Journal of Micro- biology and Biotechnology, 21:1639–1645.
  • Arora A, Sairam, R.K., Srivastava, G.C., 2002. Oxidative stress and antioxidative systems in plants. Curr. Science, 82: 1227-1238.
  • Bat, M., Tunçtürk, R., Tunçtürk, M., 2019. Kuraklık stresi altındaki ekinezya (Echinacea purpurea L.)’ da deniz yosununun büyüme parametreleri, toplam fenolik ve antioksidan madde üzerine etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (3): 496-505.
  • Blokhina, O., Virolainen, E., Fagerstedt, K.V., 2003. Antioxidants, oxidative damage and oxygen deprivation stres Annual Botany, 91: 179-194.
  • Blum, A., 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112(2-3): 119-123.
  • Catola, S., Marino, G., Emiliani, G., Hüseynovai T., Musayev, M., Akparov, Z., Maserati, B.E., 2016. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta. 243: 441–449.
  • Chaves, M. M., J. S. Pereira, J. Maroco. M. L. Rodrigues, C. P. P. Ricardo, M. L. Osorio, I. Carvalho, T. Faria, Pinheiro, C., 2002. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot. 89: 970-916.
  • Cosgrove, D., 1986. Biophysical control of plant cell growth. Annual Review Plant Physiol., 37: 377–405.
  • Çakmakçı, R., Erat, M., Erdoğan, Ü., Dönmez, F., 2007. The influence of plant growth promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soilscience, 170: 288-295.
  • Dalal, M., Dani, R.G., Kumar P.A., 2006. Current trends in the genetic engineering of vegetable crops. Scientia Horticulturae, 107: 215–225.
  • Denby, K., Gehring, C., 2005. Engineering drought and salinity tolerance in plants: lessons from genome-wide ex- pression profiling in arabidopsis. Trends in Biotechnology, 23:11, 547-552.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz F 1987. Research and experimental methods. Statistical Methods-II. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 1:1021-1295.
  • Harman, G.E., Howell, C.R., Voterbo, A., Chet, I., Lordto, M., 2004. Trichoderma species: opportunistic, a virulent plant symbionts. Nat Rev Microbiol. 2: 43-56.
  • Gill S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930.
  • Glick, B.R., 1995. The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 41:109-114.
  • Heath, R.L., Packer, L., 1968. Photoperoxidation in isolate chloroplast.i. kinetics and stoichmetryof fatty acid peroxidation. Arch. Biochem. Biophys, 125: 189-198.
  • Huo, Y., Wang, M., Wei, Y., Xia, Z., 2016. Overexpression of the maize psb A gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco. Front Plant Sci., 6:1223.
  • Inbar, J., Abramsky, M, Cohen, D., Chet, I., 1994. Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions.European J. Pl. Pathol. 100: 337-346.
  • Kazakov, E.A., Kazakova, S.M., Gulyaev, B.I., 1988. Effect of soil moisture on formation and necrosis of sugar beet leaf apparatus. Fiziologiya i Biockimiya Kul turnykh, Rastenii. 20: 431-438.
  • Kijne, J.W., 2006. Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Research, 97: 3–18.
  • Jodeh, S., Alkowni, R., Hamed, R., Samhan, S., 2015. The study of electrolyte leakage from barley (Hordeum vulgare L) and pearlmillet using plant growth promotion (PGPR) and reverse osmosis. J. Food Nutr. Res. 3, 422–429. doi: 10.12691/jfnr-3-7-3.
  • Lin, C.S., Wu, J.T., 2014. Tolerance of soil algae and cyanobacteria to drought stress. J Phycol, 50(1):131-9.
  • Li, H., Zhao, Y., Jiang, X., 2019. Seed soaking with Bacillus sp. strain HX-2 alleviates negative effects of drought stress on maize seedlings. Chilian Journal Agriculture Researches,79:3.
  • Malua, E., Vassilev, N., 2014. A contribution to set a legal framework for bio fertilisers. Applied Microbiology and Biotechnology, 98: 6599–6607.
  • Marulanda A, Barea JM, Azco´n R., 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28:115–124.
  • Mohammadian, R., Moghaddam, M., Rahimian, H., Sadeghian, S.Y., 2005. Effect of Early Season Drought Stress on Growth Characteristics of Sugar Beet Genotypes. Turk J Agric For 29: 357-368.
  • Mullet, J. E. and M. S. Whitsitt. 1996. Plant cellular responses to water deficit. Plant Growth Regul. 20: 119-124.
  • Naveed, M., Hussain, M.B., Zahir, A.Z., Mitter, B., Sessitsch, A., 2014. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73:121– 131.
  • Nordstedt, N.P., Jones, M.L., 2020. Isolation of rhizosphere bacteria that improve quality and water stress toleran- ce in greenhouse ornamentals. Front. Plant Sci. 11:826. doi: 10.3389/fpls.2020.00826.
  • Gaber, M. A., 2011. Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Sci. 180, 540–547 .
  • Goddijn O.J.M., Verwoerd T.C., Voogd E., Krutwagen P.W.H.H., Degraaf P.T.H.M., Poels J., Vandun K., Ponst, A.S., Damm B., Pen J., 1997. Inhibition of trehalase activity enhances trehalose accumulation in trans- genic plants, Plant Physiol. 113, 181–190.
  • Öztürk, İ., Korkut, K.Z., 2017. Kuraklığın buğdayın kök ağırlığına etkisi ve kökün bazı fizyolojik parametrelerle ilişkisi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 2018, 27 (1): 14−24.
  • Patiwal, C., Mitra, M., Bhayani, K., SV, V. B., 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244: 1216–1226.
  • Premchandra G.S, Saneoka, A., Ogato, S., 1990. Cell Membrane stability and indicator of drought tolerance, as affected by applied nitrogen in soybean. Journal of Agriculture Science,115: 63- 66.
  • Samancıoğlu, A., Yıldırım, E., 2015. Bitki gelişimini teşvik eden bakteri uygulamalarının bitkilerde kuraklığa toleransı arttırmadaki etkileri, Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 20(1):72-79.
  • Sarma, R.K., Saikia, R., 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GG- RJ21 Plant Soil, 377:111–126.
  • Sairam RK, Saxena, D.C., 2000. Oxidative stress and antioksidants in wheat genotypes: possible mechanism of water stres tolerance. J. Agron. 13-18:223 p.
  • El-Sayed, S., El-Mohsen Ramadan, A.A., Hellal, F., 2020. Drought stress mitigation by application of algae extract on peanut grown under sandy soil conditions. Asian Journal of Plant Sciences, 19: 230-239.
  • Sreenivasulu, N., B. Grimm, Wobus, U., Weschke, W., 2000. Differential response of antioxidant compounds to salinity stress in salt-tolerant and saltsensitive seedlings of foxtail millet (Setaria italica). Physiol. Plant., 109: 435-442.
  • Shackel, K.A., Matthews, M.A., Morrison, J.C., 1987. Dynamic relation between expansion and cellular turgor in growing grape (Vitis vinifera L.) leaves. Plant Physiol., 84:1166–1171.
  • Tiwari, S., Lata, C., Chauhan, P. S., Nautiyal, C. S., 2016. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol. Biochem. 99, 108–117. doi: 10.1016/j.plaphy.2015.11.001.
  • Yedidia I, Srivastva AK, Kapulnik Y, Chet, I., 2001. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil. 235: 235-242.
  • Valentovic, P., Luxova, M., Kolarovic, l., Gasparikova, O., 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ., 52(4): 186-191.
  • Vardharajula, S., Ali, S. Z., Grover, M., Reddy, G., Bandi, V., 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6, 1–14. doi: 10.1080/17429145.2010.535178.
  • Vinocur, B, Altman, A., 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16:123– 132.
  • Wu, D., Wang, G., 2000. Interaction of CO2 enrichment and drought on growth, water use, and yield of broad bean (Vicia faba L.). Environmental and Experimental Botany, 43: 131–139.
  • Wingler A., 2002.The function of trehalose biosynthesis in plants, Phytochemistry 60: 437– 440.
  • Zhang, W., Xie, Z., Zhang, X., LanG, D., Zhang, X., 2019. Growth-promoting bacteria alleviates drought stress of G. uralensis through improving photosynthesis characteristics and water status. Journal of Plant Interactions, 14 (1):580-589.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Rüveyde Tunçtürk 0000-0002-3759-8232

Murat Tunçtürk 0000-0002-7995-0599

Erol Oral 0000-0001-9413-1092

Publication Date December 21, 2021
Published in Issue Year 2021 Volume: 9 Issue: 2

Cite

APA Tunçtürk, R., Tunçtürk, M., & Oral, E. (2021). Kuraklık Stresi Koşullarında Yetiştirilen Soya Fasulyesinin (Glycine max L.) Bazı Fizyolojik Özellikleri Üzerine Rizobacterium (PGPR) Uygulamalarının Etkisi. ÇOMÜ Ziraat Fakültesi Dergisi, 9(2), 359-368. https://doi.org/10.33202/comuagri.881226

Cited By