Araştırma Makalesi
BibTex RIS Kaynak Göster

Güçlü Zayıf Yöntemi İle Proje Değerlendirme İçin Alternatif Bir Ölçek Önerisi: KOSGEB Örneği

Yıl 2020, Cilt: 18 Sayı: 38, 747 - 765, 30.10.2020
https://doi.org/10.35408/comuybd.589622

Öz

Günümüzde gerek kamu gerekse özel sektör, öncelikli plan ve hedeflerine ulaşmak için proje çağrıları yoluyla dış paydaşlara fon sağlamaktadır. Maliyetleri hesaplanmış ve bütçelenmiş bu projelere sağlanan fonların amaçlara uygun olarak sonuçlanacağından emin olmak için kurum ve kuruluşların proje değerlendirme süreçlerini doğru bir şekilde yürütmeleri gerekmektedir. Bu çalışmada KOSGEB tarafından sağlanan destek programları incelenmiş ve Güçlü Zayıf Yöntemi kullanılarak bir destek programının puanlama tablosu uzman görüşü alınarak ağırlıklandırılmıştır. Çalışma sonucunda, proje değerlendirme sürecindeki en önemli kriterin Yatırım Projesinin Ekonomik Etkilerinin Değerlendirilmesi kriteri ve Yatırım Alanının Fiziksel ve Yapı Yeterliliğinin en zayıf kriter olarak belirlenmiştir. Elde edilen ağırlık değerleri kullanılarak yeni bir puanlama ölçeği önerilmiş ve mevcut puan tablosu ile karşılaştırılıştır.

Kaynakça

  • Altun, A., & Demir, Y. (2015). Analitik Hiyerarşi Prosesi Yöntemi İle Tarımsal Araştırma Projelerinin Değerlendirilmesi ve Seçimi. Toprak Su Dergisi, 4(2), 41-48.
  • Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert systems with applications, 37(9), 6218-6224.
  • Arıbaş, M., & Özcan, U. (2016). Akademik Araştırma Projelerinin AHP ve TOPSIS Yöntemleri Kullanılarak Değerlendirilmesi. Politeknik Dergisi, 19(2), 163-173.
  • Atıcı, K. B., & Ulucan, A. (2009). Enerji Projelerinin Değerlendirilmesi Sürecinde Çok Kriterli Karar Verme Yaklaşımları ve Türkiye Uygulamaları. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 27(1), 161-186.
  • Badri Ahmadi, H., Kusi-Sarpong, S., & Rezaei, J. (2017). Assessing the social sustainability of supply chains using Best Worst Method. Resources, Conservation and Recycling, 126(May), 99–106. https://doi.org/10.1016/j.resconrec.2017.07.020
  • Bakshi, T., & Sarkar, B. (2011). MCA based performance evaluation of project selection. International Journal of Software Engineering & Applications, 2(2), 14-22.
  • Bakshi, T., & Sarkar, B. (2011). MCA based performance evaluation of project selection. International Journal of Software Engineering & Applications, 2(2), 14-22.
  • Beemsterboer, D. J. C., Hendrix, E. M. T., & Claassen, G. D. H. (2018). On solving the Best-Worst Method in multi-criteria decision-making⁎. IFAC-PapersOnLine, 51(11), 1660–1665. https://doi.org/10.1016/j.ifacol.2018.08.218
  • Çakır, E. ve Özdemir, M. (2016). Bulanık Çok Kriterli Karar Verme Yöntemlerinin Altı Sigma Projeleri Seçiminde Uygulanması. Business and Economics Research Journal, 7(2), 167-201.
  • Er Kara, M., & Firat, S. Ümit O. (2018). Supplier risk assessment based on best-worst method and k-means clustering: A case study. Sustainability (Switzerland), 10(4), 1–25. https://doi.org/10.3390/su10041066
  • Ghorabaee, M. K., Amiri, M., Sadaghiani, J. S., & Zavadskas, E. K. (2015). Multi-criteria project selection using an extended VIKOR method with interval type-2 fuzzy sets. International Journal of Information Technology & Decision Making, 14(05), 993-1016.
  • Ghorabaee, M. K., Amiri, M., Sadaghiani, J. S., & Zavadskas, E. K. (2015). Multi-criteria project selection using an extended VIKOR method with interval type-2 fuzzy sets. International Journal of Information Technology & Decision Making, 14(05), 993-1016.
  • Guo, S., & Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems, 121, 23–31. https://doi.org/10.1016/j.knosys.2017.01.010
  • Gupta, H. (2018). Assessing organizations performance on the basis of GHRM practices using BWM and Fuzzy TOPSIS. Journal of Environmental Management, 226(August), 201–216. https://doi.org/10.1016/j.jenvman.2018.08.005
  • Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management, 68, 35–47. https://doi.org/10.1016/j.jairtraman.2017.06.001
  • Gupta, H., & Barua, M. K. (2016). Identifying enablers of technological innovation for Indian MSMEs using best-worst multi criteria decision making method. Technological Forecasting and Social Change, 107, 69–79. https://doi.org/10.1016/j.techfore.2016.03.028
  • Gupta, H., & Barua, M. K. (2017). Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. Journal of Cleaner Production, 152, 242–258. https://doi.org/10.1016/j.jclepro.2017.03.125
  • Gupta, P., Anand, S., & Gupta, H. (2017). Developing a roadmap to overcome barriers to energy efficiency in buildings using best worst method. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2017.02.005
  • Hafezalkotob, A., & Hafezalkotob, A. (2017). A novel approach for combination of individual and group decisions based on fuzzy best-worst method. Applied Soft Computing Journal, 59, 316–325. https://doi.org/10.1016/j.asoc.2017.05.036
  • Hamurcu, M., & Eren, T. (2017). Raylı Sistem Projeleri Kararında AHS-HP ve AAS-HP Kombinasyonu. Gazi Mühendislik Bilimleri Dergisi (GMBD), 3(3), 1-13.
  • Hamurcu, M., & Eren, T. (2018). Kent İçi Ulaşım İçin Bulanık Ahp Tabanlı VIKOR Yöntemi İle Proje Seçimi. Engineering Sciences, 13(3), 217-228.
  • Mou, Q., Xu, Z., & Liao, H. (2016). An intuitionistic fuzzy multiplicative best-worst method for multi-criteria group decision making. Information Sciences. https://doi.org/10.1016/j.ins.2016.08.074
  • Nawaz, F., Asadabadi, M. R., Janjua, N. K., Hussain, O. K., Chang, E., & Saberi, M. (2018). An MCDM method for cloud service selection using a Markov chain and the best-worst method. Knowledge-Based Systems, 159(November 2017), 120–131. https://doi.org/10.1016/j.knosys.2018.06.010
  • Omrani, H., Alizadeh, A., & Emrouznejad, A. (2018). Finding the optimal combination of power plants alternatives: A multi response Taguchi-neural network using TOPSIS and fuzzy best-worst method. Journal of Cleaner Production, 203, 210–223. https://doi.org/10.1016/j.jclepro.2018.08.238
  • Palaz, H., & Kovancı, A. (2008). Türk Deniz Kuvvetleri Denizaltılarının Seçilimin AHP İle Değerlendirilmesi. Journal of Aeronautics and Space Technologies, 3(3), 53-60.
  • Pamučar, D., Petrović, I., & Ćirović, G. (2018). Modification of the Best–Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers. Expert Systems with Applications, 91, 89–106. https://doi.org/10.1016/j.eswa.2017.08.042
  • Popović, G., Stanujkić, D., & Stojanović, S. (2012). Investment project selection by applying copras method and imprecise data. Serbian Journal of Management, 7(2), 257-269.
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.
  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega (United Kingdom), 64, 126–130. https://doi.org/10.1016/j.omega.2015.12.001
  • Rezaei, J., Nispeling, T., Sarkis, J., & Tavasszy, L. (2016). A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2016.06.125
  • Rezaei, J., van Roekel, W. S., & Tavasszy, L. (2018). Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport Policy, 68(December 2017), 158–169. https://doi.org/10.1016/j.tranpol.2018.05.007
  • Rezaei, J., Wang, J., & Tavasszy, L. (2015). Linking supplier development to supplier segmentation using Best Worst Method. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2015.07.073
  • Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
  • Salimi, N., & Rezaei, J. (2018). Evaluating firms’ R&D performance using best worst method. Evaluation and Program Planning. https://doi.org/10.1016/j.evalprogplan.2017.10.002
  • San Cristóbal, J. R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method. Renewable energy, 36(2), 498-502.
  • Shojaei, P., Seyed Haeri, S. A., & Mohammadi, S. (2018). Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique. Journal of Air Transport Management, 68, 4–13. https://doi.org/10.1016/j.jairtraman.2017.05.006
  • Tian, Z. peng, Wang, J. qiang, & Zhang, H. yu. (2018). An integrated approach for failure mode and effects analysis based on fuzzy best-worst, relative entropy, and VIKOR methods. Applied Soft Computing Journal, 72, 636–646. https://doi.org/10.1016/j.asoc.2018.03.037
  • van Roekel, W. S. (2017). Improving International Logistics Performance Measuring. Delft University of Technology.
  • Wan Ahmad, W. N. K., Rezaei, J., Sadaghiani, S., & Tavasszy, L. A. (2017). Evaluation of the external forces affecting the sustainability of oil and gas supply chain using Best Worst Method. Journal of Cleaner Production, 153, 242–252. https://doi.org/10.1016/j.jclepro.2017.03.166
  • Yıldız, A. (2014). Bulanık VIKOR Yöntemini Kullanarak Proje Seçim Sürecinin İncelenmesi. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 14(1), 115-128.

An Alternative Scale Proposal for Project Evaluation using Best Worst Method: The Case of KOSGEB

Yıl 2020, Cilt: 18 Sayı: 38, 747 - 765, 30.10.2020
https://doi.org/10.35408/comuybd.589622

Öz

Nowadays, both public and private sectors provide funds to external stakeholders through project calls in order to achieve their prior plans and objectives. In order to ensure that the funds provided to these projects, whose costs have been calculated and budgeted, are produced in line with the objectives, the institutions and organizations must operate the project evaluation processes correctly. In this study, the support programs provided by KOSGEB was examined and the scoring table of a support program was weighted by taking expert opinion by using Best Worst Method. As a result of the study, the most important criterion in the project evaluation process is the Evaluation of the Economic Impact of the Investment Project and the Physical and Structure Adequacy of the Investment Place as the weakest criterion. Using the obtained weight values, a new scoring scale was proposed and compared with the current score table.

Kaynakça

  • Altun, A., & Demir, Y. (2015). Analitik Hiyerarşi Prosesi Yöntemi İle Tarımsal Araştırma Projelerinin Değerlendirilmesi ve Seçimi. Toprak Su Dergisi, 4(2), 41-48.
  • Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert systems with applications, 37(9), 6218-6224.
  • Arıbaş, M., & Özcan, U. (2016). Akademik Araştırma Projelerinin AHP ve TOPSIS Yöntemleri Kullanılarak Değerlendirilmesi. Politeknik Dergisi, 19(2), 163-173.
  • Atıcı, K. B., & Ulucan, A. (2009). Enerji Projelerinin Değerlendirilmesi Sürecinde Çok Kriterli Karar Verme Yaklaşımları ve Türkiye Uygulamaları. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 27(1), 161-186.
  • Badri Ahmadi, H., Kusi-Sarpong, S., & Rezaei, J. (2017). Assessing the social sustainability of supply chains using Best Worst Method. Resources, Conservation and Recycling, 126(May), 99–106. https://doi.org/10.1016/j.resconrec.2017.07.020
  • Bakshi, T., & Sarkar, B. (2011). MCA based performance evaluation of project selection. International Journal of Software Engineering & Applications, 2(2), 14-22.
  • Bakshi, T., & Sarkar, B. (2011). MCA based performance evaluation of project selection. International Journal of Software Engineering & Applications, 2(2), 14-22.
  • Beemsterboer, D. J. C., Hendrix, E. M. T., & Claassen, G. D. H. (2018). On solving the Best-Worst Method in multi-criteria decision-making⁎. IFAC-PapersOnLine, 51(11), 1660–1665. https://doi.org/10.1016/j.ifacol.2018.08.218
  • Çakır, E. ve Özdemir, M. (2016). Bulanık Çok Kriterli Karar Verme Yöntemlerinin Altı Sigma Projeleri Seçiminde Uygulanması. Business and Economics Research Journal, 7(2), 167-201.
  • Er Kara, M., & Firat, S. Ümit O. (2018). Supplier risk assessment based on best-worst method and k-means clustering: A case study. Sustainability (Switzerland), 10(4), 1–25. https://doi.org/10.3390/su10041066
  • Ghorabaee, M. K., Amiri, M., Sadaghiani, J. S., & Zavadskas, E. K. (2015). Multi-criteria project selection using an extended VIKOR method with interval type-2 fuzzy sets. International Journal of Information Technology & Decision Making, 14(05), 993-1016.
  • Ghorabaee, M. K., Amiri, M., Sadaghiani, J. S., & Zavadskas, E. K. (2015). Multi-criteria project selection using an extended VIKOR method with interval type-2 fuzzy sets. International Journal of Information Technology & Decision Making, 14(05), 993-1016.
  • Guo, S., & Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems, 121, 23–31. https://doi.org/10.1016/j.knosys.2017.01.010
  • Gupta, H. (2018). Assessing organizations performance on the basis of GHRM practices using BWM and Fuzzy TOPSIS. Journal of Environmental Management, 226(August), 201–216. https://doi.org/10.1016/j.jenvman.2018.08.005
  • Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management, 68, 35–47. https://doi.org/10.1016/j.jairtraman.2017.06.001
  • Gupta, H., & Barua, M. K. (2016). Identifying enablers of technological innovation for Indian MSMEs using best-worst multi criteria decision making method. Technological Forecasting and Social Change, 107, 69–79. https://doi.org/10.1016/j.techfore.2016.03.028
  • Gupta, H., & Barua, M. K. (2017). Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. Journal of Cleaner Production, 152, 242–258. https://doi.org/10.1016/j.jclepro.2017.03.125
  • Gupta, P., Anand, S., & Gupta, H. (2017). Developing a roadmap to overcome barriers to energy efficiency in buildings using best worst method. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2017.02.005
  • Hafezalkotob, A., & Hafezalkotob, A. (2017). A novel approach for combination of individual and group decisions based on fuzzy best-worst method. Applied Soft Computing Journal, 59, 316–325. https://doi.org/10.1016/j.asoc.2017.05.036
  • Hamurcu, M., & Eren, T. (2017). Raylı Sistem Projeleri Kararında AHS-HP ve AAS-HP Kombinasyonu. Gazi Mühendislik Bilimleri Dergisi (GMBD), 3(3), 1-13.
  • Hamurcu, M., & Eren, T. (2018). Kent İçi Ulaşım İçin Bulanık Ahp Tabanlı VIKOR Yöntemi İle Proje Seçimi. Engineering Sciences, 13(3), 217-228.
  • Mou, Q., Xu, Z., & Liao, H. (2016). An intuitionistic fuzzy multiplicative best-worst method for multi-criteria group decision making. Information Sciences. https://doi.org/10.1016/j.ins.2016.08.074
  • Nawaz, F., Asadabadi, M. R., Janjua, N. K., Hussain, O. K., Chang, E., & Saberi, M. (2018). An MCDM method for cloud service selection using a Markov chain and the best-worst method. Knowledge-Based Systems, 159(November 2017), 120–131. https://doi.org/10.1016/j.knosys.2018.06.010
  • Omrani, H., Alizadeh, A., & Emrouznejad, A. (2018). Finding the optimal combination of power plants alternatives: A multi response Taguchi-neural network using TOPSIS and fuzzy best-worst method. Journal of Cleaner Production, 203, 210–223. https://doi.org/10.1016/j.jclepro.2018.08.238
  • Palaz, H., & Kovancı, A. (2008). Türk Deniz Kuvvetleri Denizaltılarının Seçilimin AHP İle Değerlendirilmesi. Journal of Aeronautics and Space Technologies, 3(3), 53-60.
  • Pamučar, D., Petrović, I., & Ćirović, G. (2018). Modification of the Best–Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers. Expert Systems with Applications, 91, 89–106. https://doi.org/10.1016/j.eswa.2017.08.042
  • Popović, G., Stanujkić, D., & Stojanović, S. (2012). Investment project selection by applying copras method and imprecise data. Serbian Journal of Management, 7(2), 257-269.
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.
  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega (United Kingdom), 64, 126–130. https://doi.org/10.1016/j.omega.2015.12.001
  • Rezaei, J., Nispeling, T., Sarkis, J., & Tavasszy, L. (2016). A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2016.06.125
  • Rezaei, J., van Roekel, W. S., & Tavasszy, L. (2018). Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport Policy, 68(December 2017), 158–169. https://doi.org/10.1016/j.tranpol.2018.05.007
  • Rezaei, J., Wang, J., & Tavasszy, L. (2015). Linking supplier development to supplier segmentation using Best Worst Method. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2015.07.073
  • Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
  • Salimi, N., & Rezaei, J. (2018). Evaluating firms’ R&D performance using best worst method. Evaluation and Program Planning. https://doi.org/10.1016/j.evalprogplan.2017.10.002
  • San Cristóbal, J. R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method. Renewable energy, 36(2), 498-502.
  • Shojaei, P., Seyed Haeri, S. A., & Mohammadi, S. (2018). Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique. Journal of Air Transport Management, 68, 4–13. https://doi.org/10.1016/j.jairtraman.2017.05.006
  • Tian, Z. peng, Wang, J. qiang, & Zhang, H. yu. (2018). An integrated approach for failure mode and effects analysis based on fuzzy best-worst, relative entropy, and VIKOR methods. Applied Soft Computing Journal, 72, 636–646. https://doi.org/10.1016/j.asoc.2018.03.037
  • van Roekel, W. S. (2017). Improving International Logistics Performance Measuring. Delft University of Technology.
  • Wan Ahmad, W. N. K., Rezaei, J., Sadaghiani, S., & Tavasszy, L. A. (2017). Evaluation of the external forces affecting the sustainability of oil and gas supply chain using Best Worst Method. Journal of Cleaner Production, 153, 242–252. https://doi.org/10.1016/j.jclepro.2017.03.166
  • Yıldız, A. (2014). Bulanık VIKOR Yöntemini Kullanarak Proje Seçim Sürecinin İncelenmesi. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 14(1), 115-128.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Bahadır Fatih Yıldırım 0000-0002-0475-741X

Yayımlanma Tarihi 30 Ekim 2020
Gönderilme Tarihi 9 Temmuz 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 18 Sayı: 38

Kaynak Göster

APA Yıldırım, B. F. (2020). Güçlü Zayıf Yöntemi İle Proje Değerlendirme İçin Alternatif Bir Ölçek Önerisi: KOSGEB Örneği. Yönetim Bilimleri Dergisi, 18(38), 747-765. https://doi.org/10.35408/comuybd.589622

Sayın Araştırmacı;

Dergimize gelen yoğun talep nedeniyle Ocak ve Mart 2025 sayısı için öngörülen kontenjan dolmuştur, gönderilen makaleler ilerleyen sayılarda değerlendirilebilecektir. Bu hususa dikkat ederek yeni makale gönderimi yapmanızı rica ederiz.

Dergimize göndereceğiniz çalışmalar linkte yer alan taslak dikkate alınarak hazırlanmalıdır. Çalışmanızı aktaracağınız taslak dergi yazım kurallarına göre düzenlenmiştir. Bu yüzden biçimlendirmeyi ve ana başlıkları değiştirmeden çalışmanızı bu taslağa aktarmanız gerekmektedir.
İngilizce Makale Şablonu için tıklayınız...

Saygılarımızla,