Research Article
BibTex RIS Cite

The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature

Year 2020, Issue: 58, 169 - 199, 30.07.2020
https://doi.org/10.26650/CONNECTIST2020-0083

Abstract

Today’s digital world is characterized by advances in communication and information technologies. Internet technology provides a variety of communication channels like social media platforms, social network sites, search engines, blogs, forums, websites and e-mails. The users of these channels create digital traces which are the main source of big data in communication studies in social sciences. Big social data analytics in communication studies provides quantitative indicators to fully understand current situations rather than pre-defined cause and effect relationships. This study aims to investigate the studies in “big data and communication” in social sciences between the years 2014 and 2018. Web of Science Social Science Citation Index journals are selected to present systematic and quantitative analysis of the research field. Bibliometric analysis results provide insights about big data usage and expansion in the communication field not previously grasped by other reviews on this special topic. Bibliometric tools helped to identify research clusters, key research topics, and network and collaboration patterns in big data and communication studies in a social sciences context. This bibliometric mapping of the field visually illustrates the evolution of studies over time and identifies current research interests and future directions for the followers.

Supporting Institution

The authors declared that this study has received no financial support.

References

  • Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
  • Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent achievements and new challenges. Information Fusion, 28, 45-59. https://doi.org/10.1016/j.inffus.2015.08.005
  • Borgman, C. L., & Furner, J. (2002). Scholarly communication and bibliometrics. Annual review of information science and technology, 36(1), 2-72. Retrieved from https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/ aris.1440360102
  • Borgman, C. L., & Rice, R. E. (1992). The convergence of information science and communication: A bibliometric analysis. Journal of the American Society for Information Science, 43(6), 397-411. Retrieved from https://www. dhi.ac.uk/san/waysofbeing/data/health-jones-borgman-1992.pdf
  • Bornmann, L., Mutz, R., & Daniel, H. D. (2008). Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine. Journal of the American Society for Information Science and technology, 59(5), 830-837. https://doi.org/10.1002/asi.20806
  • Boyd, D., & Crawford, K. (2012). Critical Questions for Big Data. Information, Communication & Society, 15(5), 662– 679. https://doi.org/10.1080/1369118X.2012.678878
  • Calhoun, C. (2011). Plenary| Communication as Social Science (and More). International Journal of Communication, 5, 18. https://doi.org/10.1590/S1809- 58442012000100014
  • Cappella, J. N. (2017). Vectors into the future of mass and interpersonal communication research: Big data, social media, and computational social science. Human Communication Research, 43(4), 545-558. https://doi. org/10.1111/hcre.12114
  • Chae, B. K. (2015). Insights from hashtag# supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Economics, 165, 247-259. https://doi.org/10.1016/j.ijpe.2014.12.037
  • Chang, R. M., Kauffman, R. J., & Kwon, Y. (2014). Understanding the paradigm shift to computational social science in the presence of big data. Decision Support Systems, 63, 67-80. https://doi.org/10.1016/j.dss.2013.08.008
  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics, 5(1), 146-166. https://doi.org/10.1016/j.joi.2010.10.002
  • Coddington, M. (2015). Clarifying journalism’s quantitative turn: A typology for evaluating data journalism, computational journalism, and computer-assisted reporting. Digital journalism, 3(3), 331-348. https://doi.or g/10.1080/21670811.2014.976400
  • Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of communication, 64(2), 317-332. https://doi.org/10.1111/jcom.12084
  • Conway, B. A., Kenski, K., & Wang, D. (2015). The rise of Twitter in the political campaign: Searching for intermedia agenda-setting effects in the presidential primary. Journal of Computer-Mediated Communication, 20(4), 363-380. https://doi.org/10.1111/jcc4.12124
  • Demchenko, Y., Grosso, P., De Laat, C., & Membrey, P. (2013, May). Addressing big data issues in scientific data infrastructure. In Collaboration Technologies and Systems (CTS), 2013 International Conference on (pp. 48-55). IEEE. https://doi.org/10.1109/CTS.2013.6567203
  • Dumbill, E. (2013). Making sense of big data. https://doi.org/10.1089/big.2012.1503
  • Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131-152. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.9064&rep=rep1&type=pdf
  • Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R., Merchant, R. M., ... & Weeg, C. (2015). Psychological language on Twitter predicts county-level heart disease mortality. Psychological Science, 26(2), 159-169. https://doi.org/10.1177/0956797614557867
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. The FASEB journal, 22(2), 338-342. https://doi.org/10.1096/ fj.07-9492LSF
  • Feeley, T. H. (2008). A bibliometric analysis of communication journals from 2002 to 2005. Human Communication Research, 34(3), 505-520. https://doi.org/10.1111/j.1468-2958.2008.00330.x
  • Gan, C., & Wang, W. (2015). Research characteristics and status on social media in China: A bibliometric and co-word analysis. Scientometrics, 105(2), 1167-1182. https://doi.org/10.1007/s11192-015-1723-2
  • Golder, S. A., & Macy, M. W. (2014). Digital footprints: Opportunities and challenges for online social research. Annual Review of Sociology, 40, 129-152. https://doi.org/10.1146/annurev-soc-071913-043145
  • Hasan, S., & Ukkusuri, S. V. (2014). Urban activity pattern classification using topic models from online geo-location data. Transportation Research Part C: Emerging Technologies, 44, 363-381. https://doi.org/10.1016/j. trc.2014.04.003
  • Ishikawa, H. (2015). Social big data mining. Florida, USA: CRC Press.
  • Kalantari, A., Kamsin, A., Kamaruddin, H. S., Ebrahim, N. A., Gani, A., Ebrahimi, A., & Shamshirband, S. (2017). A bibliometric approach to tracking big data research trends. Journal of Big Data, 4(1), 30. https://doi. org/10.1186/s40537-017-0088-1
  • Kaur, N., & Sood, S. K. (2017). Dynamic resource allocation for big data streams based on data characteristics (5Vs). International Journal of Network Management, 27(4), 1-16. https://doi.org/10.1002/nem.1978
  • Kollanyi, B., Howard, P., & Woolley, S. C. (2016). Bots and automation over Twitter during the first U.S. presidential debate. Comprop Data Memo 2016.1. Retrieved from https://regmedia.co.uk/2016/10/19/data-memo-first-presidential-debate.pdf
  • Koseoglu, M. A., Rahimi, R., Okumus, F., & Liu, J. (2016). Bibliometric studies in tourism. Annals of Tourism Research, 61, 180-198. https://doi.org/10.1016/j.annals.2016.10.006
  • Kramer, A. D., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences, 111(24), 8788-8790. https://doi. org/10.1073/pnas.1320040111
  • Kreiss, D., & Jasinski, C. (2016). The tech industry meets presidential politics: Explaining the Democratic Party’s technological advantage in electoral campaigning, 2004– 2012. Political Communication, 33(4), 544-562. https://doi.org/10.1080/10584609.2015.1121941
  • Larson, K., & Watson, R. (2011). The value of social media: toward measuring social media strategies. In Proceedings of ICIS 2011, Shanghai, China.
  • Lee, K., Jung, H., & Song, M. (2016). Subject–method topic network analysis in communication studies. Scientometrics, 109(3), 1761-1787. https://doi.org/10.1007/s11192- 016-2135-7
  • Leeflang, P. S., Verhoef, P. C., Dahlström, P., & Freundt, T. (2014). Challenges and solutions for marketing in a digital era. European Management Journal, 32(1), 1-12. https://doi.org/10.1016/j.emj.2013.12.001
  • Leung, X. Y., Sun, J., & Bai, B. (2017). Bibliometrics of social media research: A co-citation and co-word analysis. International Journal of Hospitality Management, 66, 35-45. https://doi.org/10.1016/j.ijhm.2017.06.012
  • Lewis, S. C., Zamith, R., & Hermida, A. (2013). Content analysis in an era of big data: A hybrid approach to computational and manual methods. Journal of Broadcasting & Electronic Media, 57(1), 34–52. https://doi.or g/10.1080/08838151.2012.761702
  • Manovich, L. (2011). Trending: The promises and the challenges of big social data. Debates in the Digital Humanities, 2, 460-475. https://doi.org/10.5749/minnesota/9780816677948.003.0047
  • Marine-Roig, E. (2017). Measuring destination image through travel reviews in search engines. Sustainability, 9(8), 1425. https://doi.org/10.3390/su9081425
  • McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60-68. Retrieved from https://wiki.uib.no/info310/images/4/4c/ McAfeeBrynjolfsson2012-BigData-TheManagementRevolution-HBR.pdf
  • McBurney, M. K., & Novak, P. L. (2002, September). What is bibliometrics and why should you care?. In Proceedings. IEEE International Professional Communication Conference (pp. 108-114). IEEE. Retrieved from https:// ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1049094
  • Mishra, D., Gunasekaran, A., Papadopoulos, T., & Childe, S. J. (2018). Big Data and supply chain management: a review and bibliometric analysis. Annals of Operations Research, 270(1-2), 313-336. https://doi.org/10.1007/ s10479-016-2236-y
  • O’Leary, D. E. (2013). Artificial intelligence and big data. IEEE Intelligent Systems, 28(2), 96-99. https://doi. org/10.1109/MIS.2013.39
  • Olshannikova, E., Olsson, T., Huhtamäki, J., & Kärkkäinen, H. (2017). Conceptualizing big social data. Journal of Big Data, 4(1), 3. https://doi.org/10.1186/s40537-017-0063-x
  • Oracle. (2012). Oracle: Big Data for the Enterprise. Retrieved from http://www.oracle.com/us/products/database/ big-data-for-enterprise-519135.pdf
  • Özköse, H., Arı, E. S., & Gencer, C. (2015). Yesterday, today and tomorrow of big data. Procedia-Social and Behavioral Sciences, 195, 1042-1050. https://doi.org/10.1016/j.sbspro.2015.06.147
  • Paris, C., & Wan, S. (2011, May). Listening to the community: social media monitoring tasks for improving government services. In CHI’11 Extended Abstracts on Human Factors in Computing Systems (pp. 2095-2100). ACM. Retreived from https://dl.acm.org/doi/pdf/10.1145/1979742.1979878
  • Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., Ungar, L. H., & Seligman, M. E. P. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934. https://doi.org/10.1037/pspp0000020
  • Parks, M. R. (2014). Big data in communication research: Its contents and discontents. Journal of Communication, 64(2), 355-360. https://doi.org/10.1111/jcom.12090
  • Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of documentation, 25(4), 348-349.
  • Rauchfleisch, A. (2017). The public sphere as an essentially contested concept: A co-citation analysis of the last 20 years of public sphere research. Communication and the Public, 2(1), 3-18. https://doi. org/10.1177/2057047317691054
  • Russell Neuman, W., Guggenheim, L., Mo Jang, S., & Bae, S. Y. (2014). The dynamics of public attention: Agenda-setting theory meets big data. Journal of Communication, 64(2), 193-214. https://doi.org/10.1111/jcom.12088
  • Russom, P. (2011). Big data analytics. TDWI best practices report, fourth quarter, 19, 40. Retrieved from https:// vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
  • Rust, R. T., & Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206-221. https://doi.org/10.1287/mksc.2013.0836
  • Sainaghi, R., Phillips, P., Baggio, R., & Mauri, A. (2018). Cross-citation and authorship analysis of hotel performance studies. International Journal of Hospitality Management, 73, 75-84. https://doi.org/10.1016/j.ijhm.2018.02.004
  • Schroeder, R. (2016). Big data and communication research. Oxford Research Encyclopedia of Communication. https://doi.org/10.1093/acrefore/9780190228613.013.276
  • Shah, D. V., Cappella, J. N., & Neuman, W. R. (2015). Toward computational social science: Exploiting big data in the digital age. Philadelphia PA: The ANNALS of the American Academy of Political and Social Science.
  • Shelton, T., Poorthuis, A., & Zook, M. (2015). Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information. Landscape and urban planning, 142, 198-211. https://doi. org/10.1016/j.landurbplan.2015.02.020
  • Shelton, T., Poorthuis, A., Graham, M., & Zook, M. (2014). Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of ‘big data’. Geoforum, 52, 167-179. https://doi.org/10.1016/j. geoforum.2014.01.006
  • Stieglitz, S., & Dang-Xuan, L. (2013). Social media and political communication: a social media analytics framework. Social network analysis and mining, 3(4), 1277-1291. https://doi.org/10.1007/s13278-012-0079-3
  • Stieglitz, S., Brockmann, T., & Dang-Xuan, L. (2012, July). Usage Of Social Media For Political Communication. In PACIS (p. 22). Retrieved from https://aisel.aisnet.org/pacis2012/22
  • Trilling, D. (2017). Big data, analysis of. In J. Matthes, C. S. Davis, R. F. Potter (Eds.) International Encyclopedia of Communication Research Methods. New York, NY: Wiley Online Library
  • Tsou, M. H. (2011, January). Mapping cyberspace: Tracking the spread of ideas on the internet. In Proceeding of the 25th International Cartographic Conference. Retrieved from https://icaci.org/files/documents/ICC_ proceedings/ICC2011/Oral%20Presentations%20PDF/D3-Internet,%20web%20services%20and%20 web%20mapping/CO-354.pdf
  • van Atteveldt, W., & Peng, T. Q. (2018). When communication meets computation: Opportunities, challenges, and pitfalls in computational communication science. Communication Methods and Measures, 12(2-3), 81- 92. https://doi.org/10.1080/19312458.2018.1458084
  • Vogel, R., & Güttel, W. H. (2013). The dynamic capability view in strategic management: A bibliometric review. International Journal of Management Reviews, 15(4), 426-446. https://doi.org/10.1111/ijmr.12000
  • We are Social and Hootsuite, Global Digital 2019 Report, Retrieved from https://dijilopedi.com/2019-turkiye-internet-kullanim-ve-sosyal-medya-istatistikleri/
  • White, M. (2012). Digital workplaces: Vision and reality. Business Information Review, 29(4), 205-214. https://doi. org/10.1177/0266382112470412
  • Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51-65. https://doi. org/10.1016/j.tourman.2016.10.001
  • Xiang, Z., Schwartz, Z., Gerdes Jr, J. H., & Uysal, M. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction? International Journal of Hospitality Management, 44, 120-130. https://doi. org/10.1016/j.ijhm.2014.10.013
  • Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036-1040. https://doi. org/10.1073/pnas.1418680112
  • Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629

İletişim Biliminde Büyük Verinin Yükselişi: Literatürün Bibliyometrik Haritalaması

Year 2020, Issue: 58, 169 - 199, 30.07.2020
https://doi.org/10.26650/CONNECTIST2020-0083

Abstract

Günümüz dijital dünyası, iletişim ve bilgi teknolojilerindeki ilerlemelerle karakterize edilir. İnternet teknolojisi, sosyal medya platformları, sosyal ağ siteleri, arama motorları, bloglar, forumlar, web siteleri ve e-postalar gibi çeşitli iletişim kanalları sunmaktadır. Bu kanalların kullanıcıları, sosyal bilimlerdeki iletişim çalışmalarında büyük verinin ana kaynağı olan dijital izler yaratmaktadır. tanımlanmış neden sonuç ilişkilerinden ziyade mevcut durumları tam olarak anlamak için nicel göstergeler sağlamaktadır. Bu çalışma, 2014-2018 yılları arasında sosyal bilimlerde “büyük veri ve iletişim” konusundaki çalışmaları incelemeyi amaçlamaktadır. Web of Science Sosyal Bilimler Atıf Dizini dergileri araştırma alanının sistematik ve kantitatif analizini sunmak için seçilmiştir. Bibliyometrik analiz sonuçları, daha önce bu özel konuyla ilgili diğer incelemelerde ele alınmayan iletişim alanında büyük verinin kullanımı ve yayılımı hakkında bilgiler vermektedir. Bibliyometrik araçlar, sosyal bilimler kapsamında büyük veri ve iletişim çalışmalarındaki araştırma kümelerini, temel araştırma konularını, ağ ve işbirliği modellerini belirlemeye yardımcı olmuştur. Alanın bu bibliyometrik haritalaması, zaman içindeki çalışmaların evrimini görsel olarak gösterir ve takipçilere yönelik mevcut araştırma ilgi alanlarını ve gelecekteki yönelimleri tanımlar.

References

  • Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
  • Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent achievements and new challenges. Information Fusion, 28, 45-59. https://doi.org/10.1016/j.inffus.2015.08.005
  • Borgman, C. L., & Furner, J. (2002). Scholarly communication and bibliometrics. Annual review of information science and technology, 36(1), 2-72. Retrieved from https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/ aris.1440360102
  • Borgman, C. L., & Rice, R. E. (1992). The convergence of information science and communication: A bibliometric analysis. Journal of the American Society for Information Science, 43(6), 397-411. Retrieved from https://www. dhi.ac.uk/san/waysofbeing/data/health-jones-borgman-1992.pdf
  • Bornmann, L., Mutz, R., & Daniel, H. D. (2008). Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine. Journal of the American Society for Information Science and technology, 59(5), 830-837. https://doi.org/10.1002/asi.20806
  • Boyd, D., & Crawford, K. (2012). Critical Questions for Big Data. Information, Communication & Society, 15(5), 662– 679. https://doi.org/10.1080/1369118X.2012.678878
  • Calhoun, C. (2011). Plenary| Communication as Social Science (and More). International Journal of Communication, 5, 18. https://doi.org/10.1590/S1809- 58442012000100014
  • Cappella, J. N. (2017). Vectors into the future of mass and interpersonal communication research: Big data, social media, and computational social science. Human Communication Research, 43(4), 545-558. https://doi. org/10.1111/hcre.12114
  • Chae, B. K. (2015). Insights from hashtag# supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Economics, 165, 247-259. https://doi.org/10.1016/j.ijpe.2014.12.037
  • Chang, R. M., Kauffman, R. J., & Kwon, Y. (2014). Understanding the paradigm shift to computational social science in the presence of big data. Decision Support Systems, 63, 67-80. https://doi.org/10.1016/j.dss.2013.08.008
  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics, 5(1), 146-166. https://doi.org/10.1016/j.joi.2010.10.002
  • Coddington, M. (2015). Clarifying journalism’s quantitative turn: A typology for evaluating data journalism, computational journalism, and computer-assisted reporting. Digital journalism, 3(3), 331-348. https://doi.or g/10.1080/21670811.2014.976400
  • Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of communication, 64(2), 317-332. https://doi.org/10.1111/jcom.12084
  • Conway, B. A., Kenski, K., & Wang, D. (2015). The rise of Twitter in the political campaign: Searching for intermedia agenda-setting effects in the presidential primary. Journal of Computer-Mediated Communication, 20(4), 363-380. https://doi.org/10.1111/jcc4.12124
  • Demchenko, Y., Grosso, P., De Laat, C., & Membrey, P. (2013, May). Addressing big data issues in scientific data infrastructure. In Collaboration Technologies and Systems (CTS), 2013 International Conference on (pp. 48-55). IEEE. https://doi.org/10.1109/CTS.2013.6567203
  • Dumbill, E. (2013). Making sense of big data. https://doi.org/10.1089/big.2012.1503
  • Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131-152. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.9064&rep=rep1&type=pdf
  • Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R., Merchant, R. M., ... & Weeg, C. (2015). Psychological language on Twitter predicts county-level heart disease mortality. Psychological Science, 26(2), 159-169. https://doi.org/10.1177/0956797614557867
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. The FASEB journal, 22(2), 338-342. https://doi.org/10.1096/ fj.07-9492LSF
  • Feeley, T. H. (2008). A bibliometric analysis of communication journals from 2002 to 2005. Human Communication Research, 34(3), 505-520. https://doi.org/10.1111/j.1468-2958.2008.00330.x
  • Gan, C., & Wang, W. (2015). Research characteristics and status on social media in China: A bibliometric and co-word analysis. Scientometrics, 105(2), 1167-1182. https://doi.org/10.1007/s11192-015-1723-2
  • Golder, S. A., & Macy, M. W. (2014). Digital footprints: Opportunities and challenges for online social research. Annual Review of Sociology, 40, 129-152. https://doi.org/10.1146/annurev-soc-071913-043145
  • Hasan, S., & Ukkusuri, S. V. (2014). Urban activity pattern classification using topic models from online geo-location data. Transportation Research Part C: Emerging Technologies, 44, 363-381. https://doi.org/10.1016/j. trc.2014.04.003
  • Ishikawa, H. (2015). Social big data mining. Florida, USA: CRC Press.
  • Kalantari, A., Kamsin, A., Kamaruddin, H. S., Ebrahim, N. A., Gani, A., Ebrahimi, A., & Shamshirband, S. (2017). A bibliometric approach to tracking big data research trends. Journal of Big Data, 4(1), 30. https://doi. org/10.1186/s40537-017-0088-1
  • Kaur, N., & Sood, S. K. (2017). Dynamic resource allocation for big data streams based on data characteristics (5Vs). International Journal of Network Management, 27(4), 1-16. https://doi.org/10.1002/nem.1978
  • Kollanyi, B., Howard, P., & Woolley, S. C. (2016). Bots and automation over Twitter during the first U.S. presidential debate. Comprop Data Memo 2016.1. Retrieved from https://regmedia.co.uk/2016/10/19/data-memo-first-presidential-debate.pdf
  • Koseoglu, M. A., Rahimi, R., Okumus, F., & Liu, J. (2016). Bibliometric studies in tourism. Annals of Tourism Research, 61, 180-198. https://doi.org/10.1016/j.annals.2016.10.006
  • Kramer, A. D., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences, 111(24), 8788-8790. https://doi. org/10.1073/pnas.1320040111
  • Kreiss, D., & Jasinski, C. (2016). The tech industry meets presidential politics: Explaining the Democratic Party’s technological advantage in electoral campaigning, 2004– 2012. Political Communication, 33(4), 544-562. https://doi.org/10.1080/10584609.2015.1121941
  • Larson, K., & Watson, R. (2011). The value of social media: toward measuring social media strategies. In Proceedings of ICIS 2011, Shanghai, China.
  • Lee, K., Jung, H., & Song, M. (2016). Subject–method topic network analysis in communication studies. Scientometrics, 109(3), 1761-1787. https://doi.org/10.1007/s11192- 016-2135-7
  • Leeflang, P. S., Verhoef, P. C., Dahlström, P., & Freundt, T. (2014). Challenges and solutions for marketing in a digital era. European Management Journal, 32(1), 1-12. https://doi.org/10.1016/j.emj.2013.12.001
  • Leung, X. Y., Sun, J., & Bai, B. (2017). Bibliometrics of social media research: A co-citation and co-word analysis. International Journal of Hospitality Management, 66, 35-45. https://doi.org/10.1016/j.ijhm.2017.06.012
  • Lewis, S. C., Zamith, R., & Hermida, A. (2013). Content analysis in an era of big data: A hybrid approach to computational and manual methods. Journal of Broadcasting & Electronic Media, 57(1), 34–52. https://doi.or g/10.1080/08838151.2012.761702
  • Manovich, L. (2011). Trending: The promises and the challenges of big social data. Debates in the Digital Humanities, 2, 460-475. https://doi.org/10.5749/minnesota/9780816677948.003.0047
  • Marine-Roig, E. (2017). Measuring destination image through travel reviews in search engines. Sustainability, 9(8), 1425. https://doi.org/10.3390/su9081425
  • McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60-68. Retrieved from https://wiki.uib.no/info310/images/4/4c/ McAfeeBrynjolfsson2012-BigData-TheManagementRevolution-HBR.pdf
  • McBurney, M. K., & Novak, P. L. (2002, September). What is bibliometrics and why should you care?. In Proceedings. IEEE International Professional Communication Conference (pp. 108-114). IEEE. Retrieved from https:// ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1049094
  • Mishra, D., Gunasekaran, A., Papadopoulos, T., & Childe, S. J. (2018). Big Data and supply chain management: a review and bibliometric analysis. Annals of Operations Research, 270(1-2), 313-336. https://doi.org/10.1007/ s10479-016-2236-y
  • O’Leary, D. E. (2013). Artificial intelligence and big data. IEEE Intelligent Systems, 28(2), 96-99. https://doi. org/10.1109/MIS.2013.39
  • Olshannikova, E., Olsson, T., Huhtamäki, J., & Kärkkäinen, H. (2017). Conceptualizing big social data. Journal of Big Data, 4(1), 3. https://doi.org/10.1186/s40537-017-0063-x
  • Oracle. (2012). Oracle: Big Data for the Enterprise. Retrieved from http://www.oracle.com/us/products/database/ big-data-for-enterprise-519135.pdf
  • Özköse, H., Arı, E. S., & Gencer, C. (2015). Yesterday, today and tomorrow of big data. Procedia-Social and Behavioral Sciences, 195, 1042-1050. https://doi.org/10.1016/j.sbspro.2015.06.147
  • Paris, C., & Wan, S. (2011, May). Listening to the community: social media monitoring tasks for improving government services. In CHI’11 Extended Abstracts on Human Factors in Computing Systems (pp. 2095-2100). ACM. Retreived from https://dl.acm.org/doi/pdf/10.1145/1979742.1979878
  • Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., Ungar, L. H., & Seligman, M. E. P. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934. https://doi.org/10.1037/pspp0000020
  • Parks, M. R. (2014). Big data in communication research: Its contents and discontents. Journal of Communication, 64(2), 355-360. https://doi.org/10.1111/jcom.12090
  • Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of documentation, 25(4), 348-349.
  • Rauchfleisch, A. (2017). The public sphere as an essentially contested concept: A co-citation analysis of the last 20 years of public sphere research. Communication and the Public, 2(1), 3-18. https://doi. org/10.1177/2057047317691054
  • Russell Neuman, W., Guggenheim, L., Mo Jang, S., & Bae, S. Y. (2014). The dynamics of public attention: Agenda-setting theory meets big data. Journal of Communication, 64(2), 193-214. https://doi.org/10.1111/jcom.12088
  • Russom, P. (2011). Big data analytics. TDWI best practices report, fourth quarter, 19, 40. Retrieved from https:// vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
  • Rust, R. T., & Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206-221. https://doi.org/10.1287/mksc.2013.0836
  • Sainaghi, R., Phillips, P., Baggio, R., & Mauri, A. (2018). Cross-citation and authorship analysis of hotel performance studies. International Journal of Hospitality Management, 73, 75-84. https://doi.org/10.1016/j.ijhm.2018.02.004
  • Schroeder, R. (2016). Big data and communication research. Oxford Research Encyclopedia of Communication. https://doi.org/10.1093/acrefore/9780190228613.013.276
  • Shah, D. V., Cappella, J. N., & Neuman, W. R. (2015). Toward computational social science: Exploiting big data in the digital age. Philadelphia PA: The ANNALS of the American Academy of Political and Social Science.
  • Shelton, T., Poorthuis, A., & Zook, M. (2015). Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information. Landscape and urban planning, 142, 198-211. https://doi. org/10.1016/j.landurbplan.2015.02.020
  • Shelton, T., Poorthuis, A., Graham, M., & Zook, M. (2014). Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of ‘big data’. Geoforum, 52, 167-179. https://doi.org/10.1016/j. geoforum.2014.01.006
  • Stieglitz, S., & Dang-Xuan, L. (2013). Social media and political communication: a social media analytics framework. Social network analysis and mining, 3(4), 1277-1291. https://doi.org/10.1007/s13278-012-0079-3
  • Stieglitz, S., Brockmann, T., & Dang-Xuan, L. (2012, July). Usage Of Social Media For Political Communication. In PACIS (p. 22). Retrieved from https://aisel.aisnet.org/pacis2012/22
  • Trilling, D. (2017). Big data, analysis of. In J. Matthes, C. S. Davis, R. F. Potter (Eds.) International Encyclopedia of Communication Research Methods. New York, NY: Wiley Online Library
  • Tsou, M. H. (2011, January). Mapping cyberspace: Tracking the spread of ideas on the internet. In Proceeding of the 25th International Cartographic Conference. Retrieved from https://icaci.org/files/documents/ICC_ proceedings/ICC2011/Oral%20Presentations%20PDF/D3-Internet,%20web%20services%20and%20 web%20mapping/CO-354.pdf
  • van Atteveldt, W., & Peng, T. Q. (2018). When communication meets computation: Opportunities, challenges, and pitfalls in computational communication science. Communication Methods and Measures, 12(2-3), 81- 92. https://doi.org/10.1080/19312458.2018.1458084
  • Vogel, R., & Güttel, W. H. (2013). The dynamic capability view in strategic management: A bibliometric review. International Journal of Management Reviews, 15(4), 426-446. https://doi.org/10.1111/ijmr.12000
  • We are Social and Hootsuite, Global Digital 2019 Report, Retrieved from https://dijilopedi.com/2019-turkiye-internet-kullanim-ve-sosyal-medya-istatistikleri/
  • White, M. (2012). Digital workplaces: Vision and reality. Business Information Review, 29(4), 205-214. https://doi. org/10.1177/0266382112470412
  • Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51-65. https://doi. org/10.1016/j.tourman.2016.10.001
  • Xiang, Z., Schwartz, Z., Gerdes Jr, J. H., & Uysal, M. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction? International Journal of Hospitality Management, 44, 120-130. https://doi. org/10.1016/j.ijhm.2014.10.013
  • Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036-1040. https://doi. org/10.1073/pnas.1418680112
  • Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629
There are 69 citations in total.

Details

Primary Language English
Subjects Communication and Media Studies
Journal Section Research Articles
Authors

Tuğba Karaboğa This is me 0000-0003-3830-3536

Hasan Aykut Karaboğa 0000-0001-8877-3267

Yasin Şehitoğlu This is me 0000-0003-0074-6446

Publication Date July 30, 2020
Submission Date December 24, 2019
Published in Issue Year 2020 Issue: 58

Cite

APA Karaboğa, T., Karaboğa, H. A., & Şehitoğlu, Y. (2020). The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature. Connectist: Istanbul University Journal of Communication Sciences(58), 169-199. https://doi.org/10.26650/CONNECTIST2020-0083
AMA Karaboğa T, Karaboğa HA, Şehitoğlu Y. The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature. Connectist: Istanbul University Journal of Communication Sciences. July 2020;(58):169-199. doi:10.26650/CONNECTIST2020-0083
Chicago Karaboğa, Tuğba, Hasan Aykut Karaboğa, and Yasin Şehitoğlu. “The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature”. Connectist: Istanbul University Journal of Communication Sciences, no. 58 (July 2020): 169-99. https://doi.org/10.26650/CONNECTIST2020-0083.
EndNote Karaboğa T, Karaboğa HA, Şehitoğlu Y (July 1, 2020) The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature. Connectist: Istanbul University Journal of Communication Sciences 58 169–199.
IEEE T. Karaboğa, H. A. Karaboğa, and Y. Şehitoğlu, “The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature”, Connectist: Istanbul University Journal of Communication Sciences, no. 58, pp. 169–199, July 2020, doi: 10.26650/CONNECTIST2020-0083.
ISNAD Karaboğa, Tuğba et al. “The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature”. Connectist: Istanbul University Journal of Communication Sciences 58 (July 2020), 169-199. https://doi.org/10.26650/CONNECTIST2020-0083.
JAMA Karaboğa T, Karaboğa HA, Şehitoğlu Y. The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature. Connectist: Istanbul University Journal of Communication Sciences. 2020;:169–199.
MLA Karaboğa, Tuğba et al. “The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature”. Connectist: Istanbul University Journal of Communication Sciences, no. 58, 2020, pp. 169-9, doi:10.26650/CONNECTIST2020-0083.
Vancouver Karaboğa T, Karaboğa HA, Şehitoğlu Y. The Rise of Big Data in Communication Sciences: A Bibliometric Mapping of the Literature. Connectist: Istanbul University Journal of Communication Sciences. 2020(58):169-9.