Year 2018,
Volume: 1 Issue: 1, 16 - 19, 14.12.2018
Önder Gökmen Yıldız
,
Mahmut Ergüt
Mahmut Akyiğit
References
- [1] C. Baba-Hamed, M. Bekkar, Helicoidal surfaces in the three-dimensional Lorentz-Minkowski space satisfying $\triangle^{II}r_{i}=\lambda_{i}r_{i}$}, J. Geom., 100(1-2) (2011), 1.
- [2] M. P. Do Carmo, M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Math. J., Second Series, 34(3) (1982), 425-435.
- [3] L. Rafael, E. Demir, Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature, Open Math., 12(9) (2014), 1349-1361.
- [4] I. M. Roussos, The helicoidal surfaces as Bonnet surfaces. Tohoku Math. J., Second Series, 40(3)(1988), 485-490.
- [5] C. Baikoussis, T. Koufogiorgos, Helicoidal surfaces with prescribed mean or Gaussian curvature, J. Geom., 63(1) (1998), 25-29.
- [6] C. C. Beneki, G. Kaimakamis, B.J. Papantoniou, Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 275(2) (2002), 586-614.
- [7] F. Ji, Z. H. Hou, A kind of helicoidal surfaces in 3-dimensional Minkowski space, J. Math. Anal. Appl., 304(2) (2005), 632-643.
- [8] D. W. Yoon, D. S. Kim, Y.H. Kim, J.W. Lee, Constructions of helicoidal surfaces in Euclidean space with Density, Symmetry, 9(9) (2017), 173.
- [9] Ö. G. Yıldız, S. Hızal, M. Akyiğit, Type $I^{+}$ Helicoidal surfaces with prescribed weighted mean or Gaussian curvature in Minkowski space with density, An. Stiint. Univ. Ovidius Constant a, Seria Mat., 26(3) (2018), 99-108.
- [10] F. Morgan, Manifolds with Density and Perelman’s Proof of the Poincaré Conjecture, Amer. Math. Monthly, 116(2) (2009), 134-142.
- [11] D. T. Hıeu, N.M. Hoang, Ruled minimal surfaces in $\mathbb{R}^{3}$ with density $e^{z}$, Pacific J. Math., 243(2) (2009), 277-285.
- [12] F. Morgan, Geometric measure theory: a beginner’s guide, Academic press, 2016.
- [13] F. Morgan, Manifolds with density, Notices of the AMS, (2005), 853-858.
- [14] F. Morgan, Myers’ theorem with density, Kodai Math. J., 29(3) (2006), 455-461.
- [15] P. Rayon, M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13(1) (2003), 178-215.
- [16] C. Rosales, A. Cañete, V. Bayle, M. Morgan, On the isoperimetric problem in Euclidean space with density, Calc. Var. Partial Differ. Equ., 31(1) (2008), 27-46.
- [17] I. Corwin, N. Hoffman, S. Hurder, V. Šešum, Y. Xu, Differential geometry of manifolds with density, Rose-Hulman Undergrad. Math. J., 7(2006), 1-15.
Helicoidal Surfaces Which Have the Timelike Axis in Minkowski Space with Density
Year 2018,
Volume: 1 Issue: 1, 16 - 19, 14.12.2018
Önder Gökmen Yıldız
,
Mahmut Ergüt
Mahmut Akyiğit
Abstract
In this paper, we study the prescribed curvature problem in manifold with density. We consider the Minkowski 3-space with a positive density function. For a given plane curve and an axis in the plane in Minkowski 3-space, a helicoidal surface can be constructed by the plane curve under helicoidal motions around the axis. Also we give examples of helicoidal surface with weighted Gaussian curvature.
References
- [1] C. Baba-Hamed, M. Bekkar, Helicoidal surfaces in the three-dimensional Lorentz-Minkowski space satisfying $\triangle^{II}r_{i}=\lambda_{i}r_{i}$}, J. Geom., 100(1-2) (2011), 1.
- [2] M. P. Do Carmo, M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Math. J., Second Series, 34(3) (1982), 425-435.
- [3] L. Rafael, E. Demir, Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature, Open Math., 12(9) (2014), 1349-1361.
- [4] I. M. Roussos, The helicoidal surfaces as Bonnet surfaces. Tohoku Math. J., Second Series, 40(3)(1988), 485-490.
- [5] C. Baikoussis, T. Koufogiorgos, Helicoidal surfaces with prescribed mean or Gaussian curvature, J. Geom., 63(1) (1998), 25-29.
- [6] C. C. Beneki, G. Kaimakamis, B.J. Papantoniou, Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 275(2) (2002), 586-614.
- [7] F. Ji, Z. H. Hou, A kind of helicoidal surfaces in 3-dimensional Minkowski space, J. Math. Anal. Appl., 304(2) (2005), 632-643.
- [8] D. W. Yoon, D. S. Kim, Y.H. Kim, J.W. Lee, Constructions of helicoidal surfaces in Euclidean space with Density, Symmetry, 9(9) (2017), 173.
- [9] Ö. G. Yıldız, S. Hızal, M. Akyiğit, Type $I^{+}$ Helicoidal surfaces with prescribed weighted mean or Gaussian curvature in Minkowski space with density, An. Stiint. Univ. Ovidius Constant a, Seria Mat., 26(3) (2018), 99-108.
- [10] F. Morgan, Manifolds with Density and Perelman’s Proof of the Poincaré Conjecture, Amer. Math. Monthly, 116(2) (2009), 134-142.
- [11] D. T. Hıeu, N.M. Hoang, Ruled minimal surfaces in $\mathbb{R}^{3}$ with density $e^{z}$, Pacific J. Math., 243(2) (2009), 277-285.
- [12] F. Morgan, Geometric measure theory: a beginner’s guide, Academic press, 2016.
- [13] F. Morgan, Manifolds with density, Notices of the AMS, (2005), 853-858.
- [14] F. Morgan, Myers’ theorem with density, Kodai Math. J., 29(3) (2006), 455-461.
- [15] P. Rayon, M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13(1) (2003), 178-215.
- [16] C. Rosales, A. Cañete, V. Bayle, M. Morgan, On the isoperimetric problem in Euclidean space with density, Calc. Var. Partial Differ. Equ., 31(1) (2008), 27-46.
- [17] I. Corwin, N. Hoffman, S. Hurder, V. Šešum, Y. Xu, Differential geometry of manifolds with density, Rose-Hulman Undergrad. Math. J., 7(2006), 1-15.