Conference Paper
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 18 - 19, 30.10.2019

Abstract

References

  • [1] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003), 7-22.
  • [2] T. Cardinali, P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11 (2010), 3-10.
  • [3] I. Timis, On the weak stability of Picard iteration for some contractive type mappings and coincidence theorems, Int. J. Comput. Appl., 37 (2012), 9-13.
  • [4] V. Berinde, Summable almost stability of fixed point iteration procedures, Carpathian J. Math., 19 (2003), 81-88.
  • [5] A. R. Khan, F. Gürsoy, V. Kumar, Stability and data dependence results for Jungck–Khan iterative scheme, Turkish J. Math., 40 (2016), 631-640.
  • [6] L. Maru¸ster, ¸ S. M˘aru¸ster, On the error estimation and T-stability of the Mann iteration, J. Comput. Appl. Math., 276 (2015), 110-116.
  • [7] V. Karakaya, Y. Atalan, K. Do˘gan, N. El Houda Bouzara, Some fixed point results for a new three steps iteration process in Banach spaces, Fixed Point Theory, 18 (2017), 625-640.

Stability of an Iterative Algorithm

Year 2019, Volume: 2 Issue: 1, 18 - 19, 30.10.2019

Abstract

We prove that iterative algorithm (1.7) of [7] is weak $w^{2}-$stable w.r.t. an operator $T$ in the class of weak contraction mappings.

References

  • [1] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003), 7-22.
  • [2] T. Cardinali, P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11 (2010), 3-10.
  • [3] I. Timis, On the weak stability of Picard iteration for some contractive type mappings and coincidence theorems, Int. J. Comput. Appl., 37 (2012), 9-13.
  • [4] V. Berinde, Summable almost stability of fixed point iteration procedures, Carpathian J. Math., 19 (2003), 81-88.
  • [5] A. R. Khan, F. Gürsoy, V. Kumar, Stability and data dependence results for Jungck–Khan iterative scheme, Turkish J. Math., 40 (2016), 631-640.
  • [6] L. Maru¸ster, ¸ S. M˘aru¸ster, On the error estimation and T-stability of the Mann iteration, J. Comput. Appl. Math., 276 (2015), 110-116.
  • [7] V. Karakaya, Y. Atalan, K. Do˘gan, N. El Houda Bouzara, Some fixed point results for a new three steps iteration process in Banach spaces, Fixed Point Theory, 18 (2017), 625-640.
There are 7 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Faik Gürsoy 0000-0002-7118-9088

Publication Date October 30, 2019
Acceptance Date October 7, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Gürsoy, F. (2019). Stability of an Iterative Algorithm. Conference Proceedings of Science and Technology, 2(1), 18-19.
AMA Gürsoy F. Stability of an Iterative Algorithm. Conference Proceedings of Science and Technology. October 2019;2(1):18-19.
Chicago Gürsoy, Faik. “Stability of an Iterative Algorithm”. Conference Proceedings of Science and Technology 2, no. 1 (October 2019): 18-19.
EndNote Gürsoy F (October 1, 2019) Stability of an Iterative Algorithm. Conference Proceedings of Science and Technology 2 1 18–19.
IEEE F. Gürsoy, “Stability of an Iterative Algorithm”, Conference Proceedings of Science and Technology, vol. 2, no. 1, pp. 18–19, 2019.
ISNAD Gürsoy, Faik. “Stability of an Iterative Algorithm”. Conference Proceedings of Science and Technology 2/1 (October 2019), 18-19.
JAMA Gürsoy F. Stability of an Iterative Algorithm. Conference Proceedings of Science and Technology. 2019;2:18–19.
MLA Gürsoy, Faik. “Stability of an Iterative Algorithm”. Conference Proceedings of Science and Technology, vol. 2, no. 1, 2019, pp. 18-19.
Vancouver Gürsoy F. Stability of an Iterative Algorithm. Conference Proceedings of Science and Technology. 2019;2(1):18-9.