Conference Paper
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 73 - 75, 30.10.2019

Abstract

References

  • [1] R. L. Shively, On pseudo-Laguerre polynomials, Michigan thesis;1953.
  • [2] E. D. Rainville, Special Function, Macmillan, New York, 1960.
  • [3] H. L. Srivastava, L. Shy-Der, L. Shuoh-Jung, L. Han-Chun, Integral representations for the Lagrange polynomials, Shivelys pseudo-Laguerre polynomials, and the generalized Bessel polynomials, Russ. J. Math. Phys., 19 (1) (2012), 121-130.
  • [4] R. K. Jana, I. A. Salehbhai, A. K. Shukla, Shivleys polynomials of two variables, Int. J. of Math. Anal., 6 (36) (2012), 1757-1762.
  • [5] T. Letterio, Funzioni generatrici di particolari polinomi di Laguerre e de altri da essi dipendenti, Boll. Un. Mat. Ital. Ser.3, 7 (2) (1952), 160-167.
  • [6] M. A. Khan, A. H. Khan, S. M. Abbas, A note on pseudo Jacobi polynomials, Ain Shams Eng. J., 4 (2013), 127-131.
  • [7] H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Halsted Press, John Wiley and Sons, New York, 1984.
  • [8] E. Erkus-Duman, A. Altın, R. Aktas, Miscellaneous properties of some multivariable polynomials, Math. Comput. Modelling, 54 (2011), 1875-1885.
  • [9] R. Aktas, A. Altın, B. Cekim, On a two-variable analogue of Bessel functions, Journal of Inequalities and Special Functions, 3 (4) (2012), 13-23.
  • [10] N. Ozmen, E. Erkus-Duman, Some results for a family of multivariable polynomials, AIP Conf. Proc., 1558 (2013), 1124-1127.
  • [11] A. Altın, E. Erkus, On a multivariable extension of the Lagrange-Hermite polynomials, Integral Transform. Spec. Funct., 17 (4) (2006), 239-244.
  • [12] N. Ozmen, Some new properties of the Meixner polynomials, Sakarya Univ. J. Sci., 21 (6) (2017), 1454-1462.

A note on Shively’s Pseudo-Laguerre Polynomials

Year 2019, Volume: 2 Issue: 1, 73 - 75, 30.10.2019

Abstract

In this research, we esteblish some properties for the Shively’s Pseudo-Laguerre polynomials. We derive various families of multilinear and multilateral generating functions for a family of Shively’s Pseudo-Laguerre polynomials.

References

  • [1] R. L. Shively, On pseudo-Laguerre polynomials, Michigan thesis;1953.
  • [2] E. D. Rainville, Special Function, Macmillan, New York, 1960.
  • [3] H. L. Srivastava, L. Shy-Der, L. Shuoh-Jung, L. Han-Chun, Integral representations for the Lagrange polynomials, Shivelys pseudo-Laguerre polynomials, and the generalized Bessel polynomials, Russ. J. Math. Phys., 19 (1) (2012), 121-130.
  • [4] R. K. Jana, I. A. Salehbhai, A. K. Shukla, Shivleys polynomials of two variables, Int. J. of Math. Anal., 6 (36) (2012), 1757-1762.
  • [5] T. Letterio, Funzioni generatrici di particolari polinomi di Laguerre e de altri da essi dipendenti, Boll. Un. Mat. Ital. Ser.3, 7 (2) (1952), 160-167.
  • [6] M. A. Khan, A. H. Khan, S. M. Abbas, A note on pseudo Jacobi polynomials, Ain Shams Eng. J., 4 (2013), 127-131.
  • [7] H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Halsted Press, John Wiley and Sons, New York, 1984.
  • [8] E. Erkus-Duman, A. Altın, R. Aktas, Miscellaneous properties of some multivariable polynomials, Math. Comput. Modelling, 54 (2011), 1875-1885.
  • [9] R. Aktas, A. Altın, B. Cekim, On a two-variable analogue of Bessel functions, Journal of Inequalities and Special Functions, 3 (4) (2012), 13-23.
  • [10] N. Ozmen, E. Erkus-Duman, Some results for a family of multivariable polynomials, AIP Conf. Proc., 1558 (2013), 1124-1127.
  • [11] A. Altın, E. Erkus, On a multivariable extension of the Lagrange-Hermite polynomials, Integral Transform. Spec. Funct., 17 (4) (2006), 239-244.
  • [12] N. Ozmen, Some new properties of the Meixner polynomials, Sakarya Univ. J. Sci., 21 (6) (2017), 1454-1462.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nejla Özmen 0000-0001-7555-1964

Publication Date October 30, 2019
Acceptance Date October 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Özmen, N. (2019). A note on Shively’s Pseudo-Laguerre Polynomials. Conference Proceedings of Science and Technology, 2(1), 73-75.
AMA Özmen N. A note on Shively’s Pseudo-Laguerre Polynomials. Conference Proceedings of Science and Technology. October 2019;2(1):73-75.
Chicago Özmen, Nejla. “A Note on Shively’s Pseudo-Laguerre Polynomials”. Conference Proceedings of Science and Technology 2, no. 1 (October 2019): 73-75.
EndNote Özmen N (October 1, 2019) A note on Shively’s Pseudo-Laguerre Polynomials. Conference Proceedings of Science and Technology 2 1 73–75.
IEEE N. Özmen, “A note on Shively’s Pseudo-Laguerre Polynomials”, Conference Proceedings of Science and Technology, vol. 2, no. 1, pp. 73–75, 2019.
ISNAD Özmen, Nejla. “A Note on Shively’s Pseudo-Laguerre Polynomials”. Conference Proceedings of Science and Technology 2/1 (October 2019), 73-75.
JAMA Özmen N. A note on Shively’s Pseudo-Laguerre Polynomials. Conference Proceedings of Science and Technology. 2019;2:73–75.
MLA Özmen, Nejla. “A Note on Shively’s Pseudo-Laguerre Polynomials”. Conference Proceedings of Science and Technology, vol. 2, no. 1, 2019, pp. 73-75.
Vancouver Özmen N. A note on Shively’s Pseudo-Laguerre Polynomials. Conference Proceedings of Science and Technology. 2019;2(1):73-5.