A New Modular Space Derived by Euler Totient Function
Year 2019,
Volume: 2 Issue: 1, 90 - 93, 30.10.2019
Merve İlkhan
,
Emrah Evren Kara
,
Fuat Usta
Abstract
In this study, we introduce the Euler Totient sequence spaces in generalized Orlicz space and we examine some topological properties of these spaces by using the Luxemburg norm.
References
- [1] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- [2] J. Musielak, Orlicz Spaces and Modular Space, New York, Springer Verlag, 1983.
- [3] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
- [4] E. Kovac, On $\phi$ convergence and $\phi$ density, Math. Slovaca 55 (2005), 329-351.
- [5] I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, (5th edition), Wiley, New York, 1991.
- [6] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
- [7] H. Haryadi, S. Supama, A. Zulijanto, A generalization of Cesaro sequence spaces in the Orlicz space, J. Phys. Conf. Ser. 1008 (2018), 012020.
Year 2019,
Volume: 2 Issue: 1, 90 - 93, 30.10.2019
Merve İlkhan
,
Emrah Evren Kara
,
Fuat Usta
References
- [1] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- [2] J. Musielak, Orlicz Spaces and Modular Space, New York, Springer Verlag, 1983.
- [3] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
- [4] E. Kovac, On $\phi$ convergence and $\phi$ density, Math. Slovaca 55 (2005), 329-351.
- [5] I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, (5th edition), Wiley, New York, 1991.
- [6] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
- [7] H. Haryadi, S. Supama, A. Zulijanto, A generalization of Cesaro sequence spaces in the Orlicz space, J. Phys. Conf. Ser. 1008 (2018), 012020.