The space $bv_{k}^{\theta }$ and matrix transformations
Year 2019,
Volume: 2 Issue: 3, 169 - 172, 30.12.2019
G. Canan Hazar Güleç
,
Mehmet Ali Sarıgöl
Abstract
In this study, we introduce the space $bv_{k}^{\theta },$ give its some algebraic and topological properties, and also characterize some matrix operators defined on that space. Also we extend some well known results.
Supporting Institution
Pamukkale University Scientific Research Projects Coordinatorship
Project Number
(Grant No. 2019KRM004-029)
References
- [1] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematical Studies, 85, Elsevier Science Publisher, 1984.
- [2] A. M. Akhmedov, F. Başar, The fine spectra of the difference operator $\Delta $ over the sequence space $b{v_p},(1 \le p < \infty ),$ Acta Math. Sin. (Engl. Ser.), 23(10) (2007), 1757-1768.
- [3] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Analysis 68(2) (2008), 273–287.
- [4] G.C.H. Güleç, Compact Matrix Operators on Absolute Cesàro Spaces, Numer. Funct. Anal. Optim., 2019. DOI: 10.1080/01630563.2019.1633665
- [5] G. C. Hazar, M.A. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin. (Engl. Ser.), 34(5) (2018), 812-826.
- [6] A. M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo II, 52 (1998), 177-191.
- [7] E. E. Kara, M. ˙Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra 64 (2016), 2208–2223.
- [8] M. A. Sarıgöl, Spaces of Series Summable by Absolute Cesàro and Matrix Operators, Comm. Math Appl. 7(1) (2016), 11-22.
- [9] I. J. Maddox, Elements of functinal analysis, Cambridge University Press, London, New York, (1970).
- [10] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z. 154 (1977), 1-16.
- [11] E. Malkowsky, V. Rakocevic, S. Živkovic, Matrix transformations between the sequence space bvk and certain BK spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. 123(27) (2002),
33–46.
- [12] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford 18(2) (1967), 345-355.
- [13] M. F. Mears, Absolute Regularity and the Nörlund Mean, Annals of Math., 38(3) (1937), 594-601.
Year 2019,
Volume: 2 Issue: 3, 169 - 172, 30.12.2019
G. Canan Hazar Güleç
,
Mehmet Ali Sarıgöl
Project Number
(Grant No. 2019KRM004-029)
References
- [1] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematical Studies, 85, Elsevier Science Publisher, 1984.
- [2] A. M. Akhmedov, F. Başar, The fine spectra of the difference operator $\Delta $ over the sequence space $b{v_p},(1 \le p < \infty ),$ Acta Math. Sin. (Engl. Ser.), 23(10) (2007), 1757-1768.
- [3] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Analysis 68(2) (2008), 273–287.
- [4] G.C.H. Güleç, Compact Matrix Operators on Absolute Cesàro Spaces, Numer. Funct. Anal. Optim., 2019. DOI: 10.1080/01630563.2019.1633665
- [5] G. C. Hazar, M.A. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin. (Engl. Ser.), 34(5) (2018), 812-826.
- [6] A. M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo II, 52 (1998), 177-191.
- [7] E. E. Kara, M. ˙Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra 64 (2016), 2208–2223.
- [8] M. A. Sarıgöl, Spaces of Series Summable by Absolute Cesàro and Matrix Operators, Comm. Math Appl. 7(1) (2016), 11-22.
- [9] I. J. Maddox, Elements of functinal analysis, Cambridge University Press, London, New York, (1970).
- [10] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z. 154 (1977), 1-16.
- [11] E. Malkowsky, V. Rakocevic, S. Živkovic, Matrix transformations between the sequence space bvk and certain BK spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. 123(27) (2002),
33–46.
- [12] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford 18(2) (1967), 345-355.
- [13] M. F. Mears, Absolute Regularity and the Nörlund Mean, Annals of Math., 38(3) (1937), 594-601.