Conference Paper
BibTex RIS Cite

Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$

Year 2020, Volume: 3 Issue: 1, 19 - 23, 15.12.2020

Abstract

In this paper, we introduce the ring $R=\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$ where $u^{2}=u$, $v^{2}=v$, $uv=vu=0$ over which the linear codes are studied. it's shown that the ring $R=\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$ is a commutative, characteristic 8 ring with $u^{2}=u$, $v^{2}=v$, $uv=vu=0$. Also, the ideals of $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$ are found. Moreover, we define the Lee distance and the Lee weight of an element of $R$ and investigate the generator matrices of the linear code and its dual.

References

  • 1 A.R. Hammons, V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, The Z4 -linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
  • 2 S.T.Dougherty, P. Gaborit, M. Harada, P.Solé, Type II codes over F2 + uF2, IEEE Trans. Inf. Theory 45 (1999), 32–45.
  • 3 B. Yildiz and S. Karadeniz, Linear Codes over Z4 + uZ4: MacWilliams Identities Projections, and Formally Self-Dual Codes, Finite Fields and Their Applications, 27 (2014), 24–40.
  • 4 V. Sison and M. Remillion, Isometries and binary images of linear block codes over Z4 + uZ4 and Z8 + uZ8, The Asian Mathematical Conference (AMC 2016), (2016), 313-318.
  • 5 A. Dertli and Y. Cengellenmis, On the Codes Over the Ring Z4 + uZ4 + vZ4 Cyclic, Constacyclic, Quasi-Cyclic Codes, Their Skew Codes, Cyclic DNA and Skew Cyclic DNA Codes, Prespacetime Journal, 10(2) (2019), 196-213.
  • 6 S.T. Dougherty T. A. Gulliver, J. Wong, Self-dual codes over Z8 and Z9, Designs, Codes and Cryptography, 41 (2006), 235-249.
  • 7 P. Li, X. Guo, S. Zhu, Some results of linear codes over the ring Z4 + uZ4 + vZ4 + uvZ4, Journal of Applied Mathematics and Computing, 54 (2017), 307–324.
  • 8 J. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math., 121(3) (1999), 555–575.
  • 9 I. Aydoğdu, Bazı özel modüller üzerinde toplamsal kodlar, Ph. D, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Istanbul, 2014.
Year 2020, Volume: 3 Issue: 1, 19 - 23, 15.12.2020

Abstract

References

  • 1 A.R. Hammons, V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, The Z4 -linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
  • 2 S.T.Dougherty, P. Gaborit, M. Harada, P.Solé, Type II codes over F2 + uF2, IEEE Trans. Inf. Theory 45 (1999), 32–45.
  • 3 B. Yildiz and S. Karadeniz, Linear Codes over Z4 + uZ4: MacWilliams Identities Projections, and Formally Self-Dual Codes, Finite Fields and Their Applications, 27 (2014), 24–40.
  • 4 V. Sison and M. Remillion, Isometries and binary images of linear block codes over Z4 + uZ4 and Z8 + uZ8, The Asian Mathematical Conference (AMC 2016), (2016), 313-318.
  • 5 A. Dertli and Y. Cengellenmis, On the Codes Over the Ring Z4 + uZ4 + vZ4 Cyclic, Constacyclic, Quasi-Cyclic Codes, Their Skew Codes, Cyclic DNA and Skew Cyclic DNA Codes, Prespacetime Journal, 10(2) (2019), 196-213.
  • 6 S.T. Dougherty T. A. Gulliver, J. Wong, Self-dual codes over Z8 and Z9, Designs, Codes and Cryptography, 41 (2006), 235-249.
  • 7 P. Li, X. Guo, S. Zhu, Some results of linear codes over the ring Z4 + uZ4 + vZ4 + uvZ4, Journal of Applied Mathematics and Computing, 54 (2017), 307–324.
  • 8 J. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math., 121(3) (1999), 555–575.
  • 9 I. Aydoğdu, Bazı özel modüller üzerinde toplamsal kodlar, Ph. D, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Istanbul, 2014.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Basri Çalışkan 0000-0003-0512-4208

Publication Date December 15, 2020
Acceptance Date September 26, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Çalışkan, B. (2020). Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$. Conference Proceedings of Science and Technology, 3(1), 19-23.
AMA Çalışkan B. Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$. Conference Proceedings of Science and Technology. December 2020;3(1):19-23.
Chicago Çalışkan, Basri. “Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$”. Conference Proceedings of Science and Technology 3, no. 1 (December 2020): 19-23.
EndNote Çalışkan B (December 1, 2020) Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$. Conference Proceedings of Science and Technology 3 1 19–23.
IEEE B. Çalışkan, “Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$”, Conference Proceedings of Science and Technology, vol. 3, no. 1, pp. 19–23, 2020.
ISNAD Çalışkan, Basri. “Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$”. Conference Proceedings of Science and Technology 3/1 (December 2020), 19-23.
JAMA Çalışkan B. Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$. Conference Proceedings of Science and Technology. 2020;3:19–23.
MLA Çalışkan, Basri. “Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$”. Conference Proceedings of Science and Technology, vol. 3, no. 1, 2020, pp. 19-23.
Vancouver Çalışkan B. Linear Codes Over the Ring $Z_8+uZ_8+vZ_8$. Conference Proceedings of Science and Technology. 2020;3(1):19-23.