Research Article
BibTex RIS Cite

Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels

Year 2024, Volume: 1 Issue: 1, 15 - 20, 28.02.2024
https://doi.org/10.5281/zenodo.10712299

Abstract

Abstract
Aim: COVID-19 is a multisystemic disease with high mortality and morbidity. It is very important to understand the pathogenesis of the disease and to develop pharmacological treatment methods. The aim of this study was to measure serum adropin levels in COVID-19 patients in the ward and intensive care unit and to investigate whether this value can be a prognostic factor or a pharmacological treatment target.
Materials and Methods: 116 volunteer participants were included in the study. Participants were grouped as the control group consisting of patients without any disease, patients diagnosed with COVID-19 and hospitalised in the ward, patients diagnosed with COVID-19 and hospitalised in Level 2 intensive care and patients diagnosed with COVID-19 and hospitalised in Level 3 intensive care. Venous blood was taken from the patients. Serum adropin levels were measured according to the manufacturer's instructions. ROC analysis was also performed.
Results: According to serum adropin measurements, serum adropin levels of patients with COVID-19 who were hospitalised in the ward decreased compared to the control group.(p<0.05). In Level 2 intensive care and Level 3 intensive care patients, serum adropin levels decreased compared to patients in the ward.(p<0.05) According to Roc analysis, 333.1 ng/L adropin had a specificity of 0.8167 (95%, 0.6956-0.9048) and a sensitivity of 0.6522 (95%, 0.4273-0.8362).
Conclusion: COVID-19 is a disease with high mortality and morbidity affecting all systems. With this study, we think that serum adropin levels may be a prognostic factor or a new pharmacological treatment target and may shed light on new studies.

Ethical Statement

Ethics Committee Approval was received fort his study from ethics committee of Ataturk University (24.02.2022/ B.30.2.ATA.0.01.00/209).

References

  • Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C., Stark, H., Tzankov, A., Li, W. W., Li, V. W., Mentzer, S. J. & Jonigk, D. (2020). Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine. https://doi.org/10.1056/nejmoa2015432
  • Akcılar, R., Koçak, F. E., Şimşek, H., Akcılar, A., Bayat, Z., Ece, E. & Kökdaşgil, H. (2016). The effect of adropin on lipid and glucose metabolism in rats with hyperlipidemia. Iranian Journal of Basic Medical Sciences.
  • Ali, I. I., D’Souza, C., Singh, J. & Adeghate, E. (2022). Adropin’s Role in Energy Homeostasis and Metabolic Disorders. In International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23158318
  • Aydın, P., Karabulut Uzunçakmak, S., Tör, İ. H., Bilen, A. & Özden, A. (2022). Comparison of Serum Adropin Levels in Patients with Diabetes Mellitus, COVID-19, and COVID-19 with Diabetes Mellitus. Eurasian Journal of Medicine. https://doi.org/10.5152/eurasianjmed.2022.22128
  • Bonaventura, A., Vecchié, A., Dagna, L., Martinod, K., Dixon, D. L., Van Tassell, B. W., Dentali, F., Montecucco, F., Massberg, S., Levi, M. & Abbate, A. (2021). Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nature Reviews Immunology. https://doi.org/10.1038/s41577-021-00536-9
  • Elrobaa, I. H. & New, K. J. (2021). COVID-19: Pulmonary and Extra Pulmonary Manifestations. In Frontiers in Public Health. https://doi.org/10.3389/fpubh.2021.711616
  • Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B., Tallant, E. A., Diz, D. I. & Gallagher, P. E. (2005). Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.104.510461
  • Förstermann, U. & Sessa, W. C. (2012). Nitric oxide synthases: Regulation and function. In European Heart Journal. https://doi.org/10.1093/eurheartj/ehr304
  • Gao, S., McMillan, R. P., Zhu, Q., Lopaschuk, G. D., Hulver, M. W. & Butler, A. A. (2015). Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Molecular Metabolism. https://doi.org/10.1016/j.molmet.2015.01.005
  • Hosseini, A., Shanaki, M., Emamgholipour, S., Nakhjavani, M., Razi, F. & Golmohammadi, T. (2016). Elevated serum levels of adropin in patients with type 2 diabetes mellitus and its association with insulin resistance. Journal of Biology and Today’s World. https://doi.org/10.15412/J.JBTW.01050301
  • Hu, B., Guo, H., Zhou, P. & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. In Nature Reviews Microbiology. https://doi.org/10.1038/s41579-020-00459-7
  • Jasaszwili, M., Billert, M., Strowski, M. Z., Nowak, K. W. & Skrzypski, M. (2020). Adropin as a fat-burning hormone with multiple functions—review of a decade of research. In Molecules. https://doi.org/10.3390/molecules25030549
  • Jasaszwili, M., Wojciechowicz, T., Billert, M., Strowski, M. Z., Nowak, K. W. & Skrzypski, M. (2019). Effects of adropin on proliferation and differentiation of 3T3-L1 cells and rat primary preadipocytes. Molecular and Cellular Endocrinology. https://doi.org/10.1016/j.mce.2019.110532
  • Kumar, K. G., Trevaskis, J. L., Lam, D. D., Sutton, G. M., Koza, R. A., Chouljenko, V. N., Kousoulas, K. G., Rogers, P. M.,
  • Kesterson, R. A., Thearle, M., Ferrante, A. W., Mynatt, R. L., Burris, T. P., Dong, J. Z., Halem, H. A., Culler, M. D., Heisler, L. K., Stephens, J. M. & Butler, A. A. (2008). Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism. Cell Metabolism. https://doi.org/10.1016/j.cmet.2008.10.011
  • Laloglu, E. & Alay, H. (2022). Endocan as a potential marker in diagnosis and predicting disease severity in COVID-19 patients: A promising biomarker for patients with false-negative RT-PCR. Upsala Journal of Medical Sciences. https://doi.org/10.48101/ujms.v127.8211
  • Li, S., Sun, J., Hu, W., Liu, Y., Lin, D., Duan, H. & Liu, F. (2019). The association of serum and vitreous adropin concentrations with diabetic retinopathy. Annals of Clinical Biochemistry. https://doi.org/10.1177/0004563218820359
  • Long, B., Carius, B. M., Chavez, S., Liang, S. Y., Brady, W. J., Koyfman, A. & Gottlieb, M. (2022). Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. In American Journal of Emergency Medicine. https://doi.org/10.1016/j.ajem.2022.01.028
  • Lovren, F., Pan, Y., Quan, A., Singh, K. K., Shukla, P. C., Gupta, M., Al-Omran, M., Teoh, H. & Verma, S. (2010). Adropin is a novel regulator of endothelial function. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.109.931782
  • Sato, K., Yamashita, T., Shirai, R., Shibata, K., Okano, T., Yamaguchi, M., Mori, Y., Hirano, T. & Watanabe, T. (2018). Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19051293
  • Soltani, S., Beigrezaei, S., Malekahmadi, M., Clark, C. C. T. & Abdollahi, S. (2023). Circulating levels of adropin and diabetes: a systematic review and meta-analysis of observational studies. BMC Endocrine Disorders. https://doi.org/10.1186/s12902-023-01327-0
  • Teuwen, L. A., Geldhof, V., Pasut, A. & Carmeliet, P. (2020). COVID-19: the vasculature unleashed. In Nature Reviews Immunology. https://doi.org/10.1038/s41577-020-0343-0
  • Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., Mehra, M. R., Schuepbach, R. A., Ruschitzka, F. & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. In The Lancet. https://doi.org/10.1016/S0140-6736(20)30937-5
  • Wang, B., Xue, Y., Shang, F., Ni, S., Liu, X., Fan, B. & Wang, H. (2019). Association of serum adropin with the presence of atrial fibrillation and atrial remodeling. Journal of Clinical Laboratory Analysis. https://doi.org/10.1002/jcla.22672
  • Wu, L., Fang, J., Chen, L., Zhao, Z., Luo, Y., Lin, C. & Fan, L. (2014). Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non-diabetic patients. Clinical Chemistry and Laboratory Medicine. https://doi.org/10.1515/cclm-2013-0844
  • Yang, C., Demars, K. M., Hawkins, K. E. & Candelario-Jalil, E. (2016). Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides. https://doi.org/10.1016/j.peptides.2016.03.009
  • Yau, J. W., Teoh, H. & Verma, S. (2015). Endothelial cell control of thrombosis. In BMC Cardiovascular Disorders. https://doi.org/10.1186/s12872-015-0124-z
  • Zheng, J., Liu, M., Chen, L., Yin, F., Zhu, X., Gou, J., Zeng, W. & Lv, Z. (2019). Association between serum adropin level and coronary artery disease: A systematic review and meta-analysis. In Cardiovascular Diagnosis and Therapy. https://doi.org/10.21037/cdt.2018.07.09
Year 2024, Volume: 1 Issue: 1, 15 - 20, 28.02.2024
https://doi.org/10.5281/zenodo.10712299

Abstract

References

  • Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C., Stark, H., Tzankov, A., Li, W. W., Li, V. W., Mentzer, S. J. & Jonigk, D. (2020). Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine. https://doi.org/10.1056/nejmoa2015432
  • Akcılar, R., Koçak, F. E., Şimşek, H., Akcılar, A., Bayat, Z., Ece, E. & Kökdaşgil, H. (2016). The effect of adropin on lipid and glucose metabolism in rats with hyperlipidemia. Iranian Journal of Basic Medical Sciences.
  • Ali, I. I., D’Souza, C., Singh, J. & Adeghate, E. (2022). Adropin’s Role in Energy Homeostasis and Metabolic Disorders. In International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23158318
  • Aydın, P., Karabulut Uzunçakmak, S., Tör, İ. H., Bilen, A. & Özden, A. (2022). Comparison of Serum Adropin Levels in Patients with Diabetes Mellitus, COVID-19, and COVID-19 with Diabetes Mellitus. Eurasian Journal of Medicine. https://doi.org/10.5152/eurasianjmed.2022.22128
  • Bonaventura, A., Vecchié, A., Dagna, L., Martinod, K., Dixon, D. L., Van Tassell, B. W., Dentali, F., Montecucco, F., Massberg, S., Levi, M. & Abbate, A. (2021). Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nature Reviews Immunology. https://doi.org/10.1038/s41577-021-00536-9
  • Elrobaa, I. H. & New, K. J. (2021). COVID-19: Pulmonary and Extra Pulmonary Manifestations. In Frontiers in Public Health. https://doi.org/10.3389/fpubh.2021.711616
  • Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B., Tallant, E. A., Diz, D. I. & Gallagher, P. E. (2005). Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.104.510461
  • Förstermann, U. & Sessa, W. C. (2012). Nitric oxide synthases: Regulation and function. In European Heart Journal. https://doi.org/10.1093/eurheartj/ehr304
  • Gao, S., McMillan, R. P., Zhu, Q., Lopaschuk, G. D., Hulver, M. W. & Butler, A. A. (2015). Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Molecular Metabolism. https://doi.org/10.1016/j.molmet.2015.01.005
  • Hosseini, A., Shanaki, M., Emamgholipour, S., Nakhjavani, M., Razi, F. & Golmohammadi, T. (2016). Elevated serum levels of adropin in patients with type 2 diabetes mellitus and its association with insulin resistance. Journal of Biology and Today’s World. https://doi.org/10.15412/J.JBTW.01050301
  • Hu, B., Guo, H., Zhou, P. & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. In Nature Reviews Microbiology. https://doi.org/10.1038/s41579-020-00459-7
  • Jasaszwili, M., Billert, M., Strowski, M. Z., Nowak, K. W. & Skrzypski, M. (2020). Adropin as a fat-burning hormone with multiple functions—review of a decade of research. In Molecules. https://doi.org/10.3390/molecules25030549
  • Jasaszwili, M., Wojciechowicz, T., Billert, M., Strowski, M. Z., Nowak, K. W. & Skrzypski, M. (2019). Effects of adropin on proliferation and differentiation of 3T3-L1 cells and rat primary preadipocytes. Molecular and Cellular Endocrinology. https://doi.org/10.1016/j.mce.2019.110532
  • Kumar, K. G., Trevaskis, J. L., Lam, D. D., Sutton, G. M., Koza, R. A., Chouljenko, V. N., Kousoulas, K. G., Rogers, P. M.,
  • Kesterson, R. A., Thearle, M., Ferrante, A. W., Mynatt, R. L., Burris, T. P., Dong, J. Z., Halem, H. A., Culler, M. D., Heisler, L. K., Stephens, J. M. & Butler, A. A. (2008). Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism. Cell Metabolism. https://doi.org/10.1016/j.cmet.2008.10.011
  • Laloglu, E. & Alay, H. (2022). Endocan as a potential marker in diagnosis and predicting disease severity in COVID-19 patients: A promising biomarker for patients with false-negative RT-PCR. Upsala Journal of Medical Sciences. https://doi.org/10.48101/ujms.v127.8211
  • Li, S., Sun, J., Hu, W., Liu, Y., Lin, D., Duan, H. & Liu, F. (2019). The association of serum and vitreous adropin concentrations with diabetic retinopathy. Annals of Clinical Biochemistry. https://doi.org/10.1177/0004563218820359
  • Long, B., Carius, B. M., Chavez, S., Liang, S. Y., Brady, W. J., Koyfman, A. & Gottlieb, M. (2022). Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. In American Journal of Emergency Medicine. https://doi.org/10.1016/j.ajem.2022.01.028
  • Lovren, F., Pan, Y., Quan, A., Singh, K. K., Shukla, P. C., Gupta, M., Al-Omran, M., Teoh, H. & Verma, S. (2010). Adropin is a novel regulator of endothelial function. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.109.931782
  • Sato, K., Yamashita, T., Shirai, R., Shibata, K., Okano, T., Yamaguchi, M., Mori, Y., Hirano, T. & Watanabe, T. (2018). Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19051293
  • Soltani, S., Beigrezaei, S., Malekahmadi, M., Clark, C. C. T. & Abdollahi, S. (2023). Circulating levels of adropin and diabetes: a systematic review and meta-analysis of observational studies. BMC Endocrine Disorders. https://doi.org/10.1186/s12902-023-01327-0
  • Teuwen, L. A., Geldhof, V., Pasut, A. & Carmeliet, P. (2020). COVID-19: the vasculature unleashed. In Nature Reviews Immunology. https://doi.org/10.1038/s41577-020-0343-0
  • Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., Mehra, M. R., Schuepbach, R. A., Ruschitzka, F. & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. In The Lancet. https://doi.org/10.1016/S0140-6736(20)30937-5
  • Wang, B., Xue, Y., Shang, F., Ni, S., Liu, X., Fan, B. & Wang, H. (2019). Association of serum adropin with the presence of atrial fibrillation and atrial remodeling. Journal of Clinical Laboratory Analysis. https://doi.org/10.1002/jcla.22672
  • Wu, L., Fang, J., Chen, L., Zhao, Z., Luo, Y., Lin, C. & Fan, L. (2014). Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non-diabetic patients. Clinical Chemistry and Laboratory Medicine. https://doi.org/10.1515/cclm-2013-0844
  • Yang, C., Demars, K. M., Hawkins, K. E. & Candelario-Jalil, E. (2016). Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides. https://doi.org/10.1016/j.peptides.2016.03.009
  • Yau, J. W., Teoh, H. & Verma, S. (2015). Endothelial cell control of thrombosis. In BMC Cardiovascular Disorders. https://doi.org/10.1186/s12872-015-0124-z
  • Zheng, J., Liu, M., Chen, L., Yin, F., Zhu, X., Gou, J., Zeng, W. & Lv, Z. (2019). Association between serum adropin level and coronary artery disease: A systematic review and meta-analysis. In Cardiovascular Diagnosis and Therapy. https://doi.org/10.21037/cdt.2018.07.09
There are 28 citations in total.

Details

Primary Language English
Subjects Medical Pharmacology, Anaesthesiology
Journal Section Research Articles
Authors

Cihad Özçelik 0000-0002-7917-4550

Hamza Halıcı 0000-0002-2028-6603

İbrahim Hakkı Tör 0000-0003-0246-3220

Sevgi Karabulut Uzunçakmak 0000-0001-9714-0349

Pelin Aydın 0000-0001-7279-7758

Publication Date February 28, 2024
Published in Issue Year 2024 Volume: 1 Issue: 1

Cite

APA Özçelik, C., Halıcı, H., Tör, İ. H., Karabulut Uzunçakmak, S., et al. (2024). Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels. Current Research in Health Sciences, 1(1), 15-20. https://doi.org/10.5281/zenodo.10712299
AMA Özçelik C, Halıcı H, Tör İH, Karabulut Uzunçakmak S, Aydın P. Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels. Curr Res Health Sci. February 2024;1(1):15-20. doi:10.5281/zenodo.10712299
Chicago Özçelik, Cihad, Hamza Halıcı, İbrahim Hakkı Tör, Sevgi Karabulut Uzunçakmak, and Pelin Aydın. “Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels”. Current Research in Health Sciences 1, no. 1 (February 2024): 15-20. https://doi.org/10.5281/zenodo.10712299.
EndNote Özçelik C, Halıcı H, Tör İH, Karabulut Uzunçakmak S, Aydın P (February 1, 2024) Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels. Current Research in Health Sciences 1 1 15–20.
IEEE C. Özçelik, H. Halıcı, İ. H. Tör, S. Karabulut Uzunçakmak, and P. Aydın, “Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels”, Curr Res Health Sci, vol. 1, no. 1, pp. 15–20, 2024, doi: 10.5281/zenodo.10712299.
ISNAD Özçelik, Cihad et al. “Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels”. Current Research in Health Sciences 1/1 (February 2024), 15-20. https://doi.org/10.5281/zenodo.10712299.
JAMA Özçelik C, Halıcı H, Tör İH, Karabulut Uzunçakmak S, Aydın P. Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels. Curr Res Health Sci. 2024;1:15–20.
MLA Özçelik, Cihad et al. “Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels”. Current Research in Health Sciences, vol. 1, no. 1, 2024, pp. 15-20, doi:10.5281/zenodo.10712299.
Vancouver Özçelik C, Halıcı H, Tör İH, Karabulut Uzunçakmak S, Aydın P. Investigation of The Relationship Between COVID-19 Severity and Serum Adropin Levels. Curr Res Health Sci. 2024;1(1):15-20.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30426