Research Article
BibTex RIS Cite

On analogues of nilpotent and total graphs associated ring $\mathbb{Z}_n$

Year 2023, Volume: 2 Issue: 1, 1 - 4, 30.06.2023

Abstract

In the last 20 years, the graphs associated with a ring have been introduced, such as the zero-divisor graph, the nilpotent graph, the total graph, etc. The studies on these graphs are generally related to their graph invariants. In this paper, we define two novel analogue graphs over the integer rings and obtain some properties as well as the spectrum with respect to the adjacency matrix.

References

  • Anderson, D. F., Livingston, P. S. (1999). The zero-divisor graph of a commutative ring. Journal of Algebra, 217, 434-447.
  • Anderson, D. F., Levy, R., Shapiro, J. (2003). Zero-divisor graphs, von Neumann regular rings and Boolean algebras. J. Pure Appl. Algebra, 180, 221- 241.
  • Anderson, D. F., Badawi, A. (2008). The total graph of a commutative ring. Journal of Algebra, 320, 2706-2719.
  • Anderson, D. F., Asir, T., Badawi,A., Chelvam, T.T. (2021). Graphs from rings. Springer.
  • Brouwer, A. E., Haemers, W. H. (2012). Spectra of graphs. Springer.
  • Bajaj, S., Panigrahi, P. (2022). On the adjacency spectrum of zero divisor graph of ring Zn. Journal of Algebra and its Appl., 21 (10), 2250197. Cantekin, H. P. Sorgun, S. (2017). Laplacian spectral properties of nilpotent graphs over the ring Z_n. Sakarya University Journal of Science, 21 (6), 1443-1447.
  • Chattopadhyay, S., Patra, K.L., Sahoo, B.K. (2020). Laplacian eigenvalues of the zero divisor graph of the ring Zn. Linear Algebra and its Appl, 584, 267-286.
  • Li, A. H., Li, Q. S. (2010). A kind of graph structure on von-Neumann regular rings. International Journal of Algebra, 4, 291-302.
  • Nikmehr, M.J., Khojasteh, S. (2013). On the nilpotent graph of a ring. Turkish Journal of Mathematics, 37, 553-559.
  • Pirzada ,S. Rather B. A. , Aijaz, M., Chishti, T. A. (2022). On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of Z_n. Linear and Multilinear Algebra, 70 (17), 3354-3369.
  • Pirzada, S., Rather, B., Shaban, R., Chishti, T. (2023). Signless Laplacian eigenvalues of the zero divisor graph associated to finite commutative ring. Communications in Comb. and Opt., 8 (3), 561-574.
  • Singh, P., Bhat, K.V. (2020). Zero-divisor graphs of finite commutative rings :a survey. Surveys in Mathematics and its Applications, 15, 371-397.

$\mathbb{Z}_n$ halkası üzerinde tanımlı nilpotent ve total grafların analogları üzerine

Year 2023, Volume: 2 Issue: 1, 1 - 4, 30.06.2023

Abstract

Son 20 yıldır, sıfır bölen çizge, nilpotent çizge ve total çizge gibi bir halkadan oluşmuş çizgeler tanıtılmıştır. Bu çizgeler üzerinde yapılan çalışmalar genellikle .çizge değişmezleri üzerinedir. Bu makalede nilpotent ve total çizgelerden yardımıyla Z_n tam sayı halkasında iki yeni benzer çizge tanımı yapılmıştır ve bu çizgelerin komşuluk spektrumları yanı sıra bazı özellikleri der verilmiştir.

References

  • Anderson, D. F., Livingston, P. S. (1999). The zero-divisor graph of a commutative ring. Journal of Algebra, 217, 434-447.
  • Anderson, D. F., Levy, R., Shapiro, J. (2003). Zero-divisor graphs, von Neumann regular rings and Boolean algebras. J. Pure Appl. Algebra, 180, 221- 241.
  • Anderson, D. F., Badawi, A. (2008). The total graph of a commutative ring. Journal of Algebra, 320, 2706-2719.
  • Anderson, D. F., Asir, T., Badawi,A., Chelvam, T.T. (2021). Graphs from rings. Springer.
  • Brouwer, A. E., Haemers, W. H. (2012). Spectra of graphs. Springer.
  • Bajaj, S., Panigrahi, P. (2022). On the adjacency spectrum of zero divisor graph of ring Zn. Journal of Algebra and its Appl., 21 (10), 2250197. Cantekin, H. P. Sorgun, S. (2017). Laplacian spectral properties of nilpotent graphs over the ring Z_n. Sakarya University Journal of Science, 21 (6), 1443-1447.
  • Chattopadhyay, S., Patra, K.L., Sahoo, B.K. (2020). Laplacian eigenvalues of the zero divisor graph of the ring Zn. Linear Algebra and its Appl, 584, 267-286.
  • Li, A. H., Li, Q. S. (2010). A kind of graph structure on von-Neumann regular rings. International Journal of Algebra, 4, 291-302.
  • Nikmehr, M.J., Khojasteh, S. (2013). On the nilpotent graph of a ring. Turkish Journal of Mathematics, 37, 553-559.
  • Pirzada ,S. Rather B. A. , Aijaz, M., Chishti, T. A. (2022). On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of Z_n. Linear and Multilinear Algebra, 70 (17), 3354-3369.
  • Pirzada, S., Rather, B., Shaban, R., Chishti, T. (2023). Signless Laplacian eigenvalues of the zero divisor graph associated to finite commutative ring. Communications in Comb. and Opt., 8 (3), 561-574.
  • Singh, P., Bhat, K.V. (2020). Zero-divisor graphs of finite commutative rings :a survey. Surveys in Mathematics and its Applications, 15, 371-397.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Physics
Journal Section Research Articles
Authors

Hatice Pınar Cantekin 0000-0002-9692-275X

Sezer Sorgun 0000-0001-8708-1226

Early Pub Date June 16, 2023
Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 2 Issue: 1

Cite

APA Cantekin, H. P., & Sorgun, S. (2023). On analogues of nilpotent and total graphs associated ring $\mathbb{Z}_n$. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 2(1), 1-4.
AMA Cantekin HP, Sorgun S. On analogues of nilpotent and total graphs associated ring $\mathbb{Z}_n$. CUJAST. June 2023;2(1):1-4.
Chicago Cantekin, Hatice Pınar, and Sezer Sorgun. “On Analogues of Nilpotent and Total Graphs Associated Ring $\mathbb{Z}_n$”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 2, no. 1 (June 2023): 1-4.
EndNote Cantekin HP, Sorgun S (June 1, 2023) On analogues of nilpotent and total graphs associated ring $\mathbb{Z}_n$. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 2 1 1–4.
IEEE H. P. Cantekin and S. Sorgun, “On analogues of nilpotent and total graphs associated ring $\mathbb{Z}_n$”, CUJAST, vol. 2, no. 1, pp. 1–4, 2023.
ISNAD Cantekin, Hatice Pınar - Sorgun, Sezer. “On Analogues of Nilpotent and Total Graphs Associated Ring $\mathbb{Z}_n$”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 2/1 (June 2023), 1-4.
JAMA Cantekin HP, Sorgun S. On analogues of nilpotent and total graphs associated ring $\mathbb{Z}_n$. CUJAST. 2023;2:1–4.
MLA Cantekin, Hatice Pınar and Sezer Sorgun. “On Analogues of Nilpotent and Total Graphs Associated Ring $\mathbb{Z}_n$”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 2, no. 1, 2023, pp. 1-4.
Vancouver Cantekin HP, Sorgun S. On analogues of nilpotent and total graphs associated ring $\mathbb{Z}_n$. CUJAST. 2023;2(1):1-4.