Araştırma Makalesi
BibTex RIS Kaynak Göster

Polimer Cıvatalar için Yeni Bir Üretim Yöntemi ve Farklı Baskı Yönlerinin Polimer Cıvataların Çekme ve Kesme Dayanımı Üzerine Etkisi

Yıl 2022, Cilt: 37 Sayı: 2, 519 - 530, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146505

Öz

Hafif yapılar günümüzde en çok çalışılan konulardan birisi olarak karşımıza çıkmaktadır. Metalden üretilen birçok makine elemanı 3D yazıcı teknolojisi ile hafif polimer malzemelerden üretilebilmektedir. Bu çalışmada, polimer cıvatalar için yeni bir üretim yöntemi önerilmiş ve baskı yönünün çekme ve kesme mukavemeti üzerine olan etkileri deneysel olarak incelenmiştir. Öncelikle cıvata şaftları farklı baskı yönleri için eriyik yığın modelleme (EYM) yöntemiyle üretilmiştir, ardından şaftların son çapları tornalama işlemi ile belirlenmiştir. Diş açmada kullanılacak olan pafta için özel bir aparat tasarlanmış üretilmiştir. Cıvata dişleri bu özel aparat kullanılarak pafta ile açılmıştır. Ġmalat sürecinden sonra, üretilen çekme ve kesme test numunelerinin performansları çekme ve kesme testleri ile belirlenmiştir. Çekme ve kesme testleri için ayrıca özel aparat tasarımları da gerçekleştirilmiştir. Gerçekleştirilen çekme ve kesme testleri sonucunda baskı yönünün cıvataların çekme ve kesme dayanımları üzerinde oldukça etkili olduğu görülmektedir. 0º üretim açısı ile üretilen cıvataların dayanımının en yüksek, 45º ile üretilen cıvataların dayanımının ise en düşük olduğu belirlenmiştir.

Kaynakça

  • 1. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D., 2018. Additive Manufacturing (3D printing): A Review of Materials, Methods. Applications and Challenges, Composites Part B, 143, 172–196.
  • 2. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., 2018. Process Parameters Influence Over the Mechanical Properties of Polymer Specimens: A review. Polymer Testing, 69, 157 – 166.
  • 3. Geng, P., Zhao, J., Gao, Z., Wu, W., Ye, W., Li, G., Qu, H., 2021. Effects of Printing Parameters on the Mechanical Properties of High-performance Polyphenylene Sulfide Three-dimensional Printing. 3D Printing and Additive Manufacturing, 8(1), 33 –41.
  • 4. Travieso-Rodriguez, J.A., Jerez-Mesa, R., Lluma, J., Traver-Ramos, O., Gomes-Gras G., Rovira, J.J.R., 2019. Mechanical Properties of 3D-Printing Polylactic Acid Parts Subjected to Bending Stress and Fatigue Testing. Materials, 12, 1–20.
  • 5. Lee, D., Wu, G.Y., 2020. Parameters Affecting the Mechanical Properties of Three-dimensional (3D) Printed Carbon Fiber-reinforced Polylactide Composites. Polymers, 12, 1–11.
  • 6. Nguyen, H.V., Nguyen, H.Q., Nguyen, V.D., Seo, T.S., 2019. A 3D Printed Screw-and-Nut Based Droplet Generator with Facile and Precise Droplet Size Controllability. Sensors and Actuators B: Chemical, .296, 12676.
  • 7. Dhandapani, R., Krishnan, P.D., Zemmifer, A., Kannan, V., Manigandan, A., Arul, M.R., Jaiswal, D., Subramanian, A., Kumbar, S.G., Sethuraman, S., 2020. Additive Manufacturing of Biodegradable Porous Orthopaedic Screw. Bioactive Materials, 5, 458–467.
  • 8. Feng, X., Xue, F., 2020. Characterization of 3D Printed Bolts Based on Digital Image Correlation and Infrared Thermography. Materials and Design, 191, 108641.
  • 9. Harshitha V., Rao, S.S., 2019. Design and Analysis of ISO Standard Bolt and Nut in FDM 3D Printer Using PLA and ABS Materials. Materials Today: Proceedings, 19, 583–588.
  • 10. Kumar, C.L., Prasad, V., Vanaja, T., 2017. Experimental Validation of 3-D Printed Bolts. International Journal of Modern Engineering Research, 7, 3, 1–12.
  • 11. Yesil, O., Mazanoglu, K., 2018. Effects of Filling Ratio, Orientation and Print Temperature on Bending Properties of 3D Printed PLA Beams. Usak University Journal of Engineering Sciences, 1(2), 66–75.
  • 12. Keles, O., Blevins, C.W., Bowman, K.J., 2017. Effect of Build Orientation on the Mechanical Reliability of 3D Printed ABS. Rapid Prototyping Journal, 23(2), 320–328.
  • 13. Markiz, N., Horvath, E., Ficzere, P., 2020. Influence of Printing Direction on 3D Printed ABS Specimens. Production Engineering Archives, 26(3), 127 – 130.
  • 14. Valean, C., Marşavina, L., Marghitas, M., Linul, E., Razavi, J., Berto, F., 2020. Effect of Manufacturing Parameters on Tensile Properties of FDM Printed Specimens. Procedia Structural Integrity, 26, 313–320.
  • 15. Tezel, T., Kovan, V., Topal, E.S., 2019. Effects of the Printing Parameters on Short-term Creep Behaviours of Three-dimensional Printed Polymers. Journal of Applied Polymer Science, 47564, 1–6.
  • 16. Gonabadi, H., Yadav, A., Bull, S.J., 2020. The Effect of Processing Parameters on the Mechanical Characteristics of PLA Produced by A 3D FFF Printer. The International Journal of Advanced Manufacturing Technology, 111, 695–709.
  • 17. ASTM D638-14, 2014. Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA.

A Novel Production Method of Polymer Bolts and the Effects of the Printing Orientation on Tensile and Shear Strength of the 3D Printed Bolts

Yıl 2022, Cilt: 37 Sayı: 2, 519 - 530, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146505

Öz

Lightweight structures are one of the most studied topics today. Many metal machine elements can be produced from lightweight polymer materials with 3D printer technology. In this study a novel manufacturing method is proposed for the polymer bolts and the effects of the printing directions on the tensile and shear strength are investigated experimentally. Firstly the bolt shafts are produced FDM method by using 3D printer for different print orientations and the final diameters of the bolt shafts are determined by the turning process. A special apparatus is designed and manufacture for threader tool. The screw pitches are opened by using this special apparatus with threader tool. After the manufacturing process, the performance of the produced tensile and shear test samples are defined by using tensile and shear tests. A special tensile test apparatus is also developed in this study. It is seen that the printing orientation has great effects on the tensile and shear durability of the bolts. It has been determined that the strength of the bolts produced with a production angle of 0º is the highest, and the strength of the bolts produced with 45º is the lowest.

Kaynakça

  • 1. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D., 2018. Additive Manufacturing (3D printing): A Review of Materials, Methods. Applications and Challenges, Composites Part B, 143, 172–196.
  • 2. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., 2018. Process Parameters Influence Over the Mechanical Properties of Polymer Specimens: A review. Polymer Testing, 69, 157 – 166.
  • 3. Geng, P., Zhao, J., Gao, Z., Wu, W., Ye, W., Li, G., Qu, H., 2021. Effects of Printing Parameters on the Mechanical Properties of High-performance Polyphenylene Sulfide Three-dimensional Printing. 3D Printing and Additive Manufacturing, 8(1), 33 –41.
  • 4. Travieso-Rodriguez, J.A., Jerez-Mesa, R., Lluma, J., Traver-Ramos, O., Gomes-Gras G., Rovira, J.J.R., 2019. Mechanical Properties of 3D-Printing Polylactic Acid Parts Subjected to Bending Stress and Fatigue Testing. Materials, 12, 1–20.
  • 5. Lee, D., Wu, G.Y., 2020. Parameters Affecting the Mechanical Properties of Three-dimensional (3D) Printed Carbon Fiber-reinforced Polylactide Composites. Polymers, 12, 1–11.
  • 6. Nguyen, H.V., Nguyen, H.Q., Nguyen, V.D., Seo, T.S., 2019. A 3D Printed Screw-and-Nut Based Droplet Generator with Facile and Precise Droplet Size Controllability. Sensors and Actuators B: Chemical, .296, 12676.
  • 7. Dhandapani, R., Krishnan, P.D., Zemmifer, A., Kannan, V., Manigandan, A., Arul, M.R., Jaiswal, D., Subramanian, A., Kumbar, S.G., Sethuraman, S., 2020. Additive Manufacturing of Biodegradable Porous Orthopaedic Screw. Bioactive Materials, 5, 458–467.
  • 8. Feng, X., Xue, F., 2020. Characterization of 3D Printed Bolts Based on Digital Image Correlation and Infrared Thermography. Materials and Design, 191, 108641.
  • 9. Harshitha V., Rao, S.S., 2019. Design and Analysis of ISO Standard Bolt and Nut in FDM 3D Printer Using PLA and ABS Materials. Materials Today: Proceedings, 19, 583–588.
  • 10. Kumar, C.L., Prasad, V., Vanaja, T., 2017. Experimental Validation of 3-D Printed Bolts. International Journal of Modern Engineering Research, 7, 3, 1–12.
  • 11. Yesil, O., Mazanoglu, K., 2018. Effects of Filling Ratio, Orientation and Print Temperature on Bending Properties of 3D Printed PLA Beams. Usak University Journal of Engineering Sciences, 1(2), 66–75.
  • 12. Keles, O., Blevins, C.W., Bowman, K.J., 2017. Effect of Build Orientation on the Mechanical Reliability of 3D Printed ABS. Rapid Prototyping Journal, 23(2), 320–328.
  • 13. Markiz, N., Horvath, E., Ficzere, P., 2020. Influence of Printing Direction on 3D Printed ABS Specimens. Production Engineering Archives, 26(3), 127 – 130.
  • 14. Valean, C., Marşavina, L., Marghitas, M., Linul, E., Razavi, J., Berto, F., 2020. Effect of Manufacturing Parameters on Tensile Properties of FDM Printed Specimens. Procedia Structural Integrity, 26, 313–320.
  • 15. Tezel, T., Kovan, V., Topal, E.S., 2019. Effects of the Printing Parameters on Short-term Creep Behaviours of Three-dimensional Printed Polymers. Journal of Applied Polymer Science, 47564, 1–6.
  • 16. Gonabadi, H., Yadav, A., Bull, S.J., 2020. The Effect of Processing Parameters on the Mechanical Characteristics of PLA Produced by A 3D FFF Printer. The International Journal of Advanced Manufacturing Technology, 111, 695–709.
  • 17. ASTM D638-14, 2014. Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Oğuz Doğan 0000-0003-4203-8237

Muhammed Safa Kamer 0000-0003-3852-1031

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 2

Kaynak Göster

APA Doğan, O., & Kamer, M. S. (2022). A Novel Production Method of Polymer Bolts and the Effects of the Printing Orientation on Tensile and Shear Strength of the 3D Printed Bolts. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 519-530. https://doi.org/10.21605/cukurovaumfd.1146505