Research Article
BibTex RIS Cite

Yanal Yüklere Maruz Kalan Betonarme Kolonlarin Basit Nonlinear Analizi

Year 2022, Volume: 37 Issue: 4, 1113 - 1126, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230959

Abstract

Bu çalışmada, zayıf detaylandırılmış betonarme kolonların yanal yükler altındaki monotonik ve histeretik davranışı SAP2000 ile basit bir şekilde modellenmiştir. Eğilme, donatı sıyrılması ve kesme deformasyonlarının yanal deformasyona katkıda bulunduğu literatürde gösterilmiştir. Bu deformasyonların her biri için RC kolonların monotonik ve histeretik tepkileri belirlenmiştir. İtme yükü altında, eğilme, donatı sıyrılaması ve kesme deformasyonlarından kaynaklanan deformasyonlar, kolonun monotonik davranışını oluşturmak için toplanmıştır. Monotonik modelden alınan yük deformasyon eğrisi, histeretik pivot modelin omurga eğrisini oluşturmak için kullanılmıştır. Bu çalışmada elde edilen monotonik ve histeretik yanal yük-deplasman eğrileri deneysel çalışmalardan elde edilen sonuçlarla karşılaştırılmıştır. SAP2000 ve deneysel sonuçların iyi bir uyum içinde olduğu ve zayıf detaylandırılmış RC kolonlarının davranışının karmaşık analiz yöntemlerini kullanmak yerine SAP2000 tarafından basitleştirildiği gösterilmiştir.

References

  • ⦁ Sezen, H., 2002. Seismic Behavior and Modeling of Reinforced Concrete Building Columns. Ph.D. Dissertation. University of California, Berkeley, 324.
  • ⦁ Sezen, H., Moehle, J.P., 2004. Shear Strength Model for Lightly Reinforced Concrete Columns. Journal of Structural Engineering. ASCE, 130(11), 1692-1703.
  • ⦁ Lodhi, M.S., Sezen, H., 2012. Estimation of Monotonic Behavior of Reinforced Concrete Columns Considering Shear-Flexure-Axial Load Interaction. Earthquake Engineering and Structural Dynamics J., 41(15), 2159–2175.
  • ⦁ Alsiwat, J.M., Saatcioglu, M., 1992. Reinforcement Anchorage Slip under Monotonic Loading. Journal of Structural Engineering. ASCE, 118(9), 2421-2438.
  • ⦁ Eligehausen, R., Popov, E.P., Bertero, V.V., 1983. Local Bond Stress-Slip Relationship of a Deformed Bar Under Generalized Excitations. Report No. UCB/EERC 83/23. Earthquake Engineering Research Center, University of California, Berkeley, 169.
  • ⦁ Otani, S., Sozen, M.A., 1972. Behavior of Multistory Reinforced Concrete Frames during Earthquakes.Structural Research Series No. 392 University of Illinois, Urbana, 551.
  • ⦁ Morita, S., Kaku, T., 1984. Slippage of Reinforcement in Beam-Column Joint of Reinforced Concrete Frame. Proceedings of the Eighth World Conference on Earthquake Engineering. San Francisco, July 1984. 477-484.
  • ⦁ Lehman, D.E., Moehle, J.P., 2000. Seismic Performance of Well-Confined Concrete Bridge Columns. Report No. PEER-1998/01. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 316.
  • ⦁ SEAOC, 1999. Recommended Lateral Force Requirements and Commentary, Seismology Committee, Structural Engineers Association of California, San Francisco, USA., 444.
  • ⦁ ACI Committee 318, 2002. Building Code Requirements for Structural Concrete and Commentary, ACI 318-02/318R-02. American Concrete Institute, Farmington Hills, Mich., 443.
  • ⦁ Caltrans. 2002. Caltrans Seismic Design Criteria, Version 1.3, California Department of Transportation, Sacramento, CA.
  • ⦁ Patwardhan, C., 2005. Strength and Deformation Modeling of Reinforced Concrete Columns. M.S. Thesis. The Ohio State University, Columbus, Ohio, 166.
  • ⦁ Vecchio, F.J., Collins, M.P., 1986. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Journal. 83(2), 219-231.
  • ⦁ Clough, R.W., 1966. Effect of Stiffness Degradation on Earthquake Ductility Requirements. Report 66-16. Structural and Materials Research. Structural Engineering Laboratory, UC, Berkeley.
  • ⦁ Takeda, T., Sozen, M.A., Neilsen, N.N., 1970. Reinforced Concrete Response to Simulated Earthquakes. Journal of the Structural Division, ASCE, 96(12), 2557-2573.
  • ⦁ Soleimani D., Popov, EP., Bertero, V.V., 1979. Nonlinear Beam Model for R/C Frame Analysis. In: Proceedings of 7th Conference on Electronic Computation, St. Louis.
  • ⦁ Roufaiel, M.S.L., Meyer, C., 1987. Analytical Modelling of Hysteretic Behavior of R/C Frames. Journal of Structural Engineering. ASCE, 113(3), 429-444.
  • ⦁ Kabeyasawa, T., Shiohara, H., Otani, S., Aoyama, H., 1983. Analysis of the Full Scale Seven Story Reinforced Concrete Test Structure. Journal of the Faculty of Engineering, The University of Tokyo, 37(2), 431–478.
  • ⦁ Dowell, R.K., Seible F., Wilson E.L., 1998. Pivot Hysteresis Model for Reinforced Concrete Members. ACI Structural Journal, 95(5), 607-617.
  • ⦁ SAP2000. Integrated Finite Element Analysis and Design of Structures, Computers and Structures Inc., Berkeley, California, USA.
  • ⦁ Mander, J. B., Priestley, J. N., Park, R., 1988. Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, ASCE, 114(8), 1804-1825.
  • ⦁ Inoue, K., Shimizu, N., 1988. Plastic Collapse Load of Steel Braced Frames Subjected to Horizontal Force. Journal of Structural and Construction Engineering, 388, 59- 69.
  • ⦁ Sezen, H., Setzler, E.J., 2008. Reinforcement Slip in Reinforced Concrete Columns. ACI Struct. J., 105(3), 280–289.
  • ⦁ Moehle, J.P., 1992. Displacement-Based Design of RC Structures Subjected to Earthquakes. Earthquake Spectra. EERI, 8(3), 403-428.
  • ⦁ Elwood K.J., Moehle J.P., Evaluation of Existing Reinforced Concrete Columns. 13th World Conference on Earthquake Engineering, Aug, 2004, Paper No. 579.
  • ⦁ Setzler, E.J., 2005. Modeling the Behavior of Lightly Reinforced Concrete Columns Subjected to Lateral Loads. M.S. Thesis. The Ohio State University, Columbus, Ohio, 202.
  • ⦁ Lodhi M.S., 2010. Response Estimation of Reinforced Concrete Columns Subjected to Lateral Loads. MS thesis, Ohio State Univ., Columbus, Ohio, 205.
  • ⦁ Chowdary, T., 2007. Hysteretic Modeling of Shear-Critical Reinforced Concrete Columns. Ms.Thesis. Ohio State Univ. Columbus, Ohio. 217.
  • ⦁ ATC-24, 1992. Guidelines for Cyclic Seismic Testing of Components of Steel Structures for Buildings. Report No. ATC-24, Applied Technology Council, Redwood City, CA.

Simplified Nonlinear Analysis of RC Columns Exposed to Lateral Loads

Year 2022, Volume: 37 Issue: 4, 1113 - 1126, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230959

Abstract

In this study, the monotonic and hysteretic behavior of poorly detailed reinforced concrete (RC) columns under lateral loads is simply modeled by SAP2000. It has been shown in literature that the flexural, reinforcement slip and shear deformations is contributed to lateral deformation. The monotonic and hysteretic responses of RC columns due to each of these deformations, were determined. Under pushover loading, deformations due to the flexural, reinforcement slip and shear deformations were summed up to create monotonic behavior of the column. The load-deformation curve from the monotonic model were used to create backbone curve of hysteretic pivot model. The monotonic and hysteretic lateral load- displacement curves obtained in this study were compared with the results obtained from experimental studies. It has been shown that SAP2000 and experimental results were in good agreement and the behavior of poorly detailed RC columns are simplified by SAP2000 instead of using the complex analysis methods.

References

  • ⦁ Sezen, H., 2002. Seismic Behavior and Modeling of Reinforced Concrete Building Columns. Ph.D. Dissertation. University of California, Berkeley, 324.
  • ⦁ Sezen, H., Moehle, J.P., 2004. Shear Strength Model for Lightly Reinforced Concrete Columns. Journal of Structural Engineering. ASCE, 130(11), 1692-1703.
  • ⦁ Lodhi, M.S., Sezen, H., 2012. Estimation of Monotonic Behavior of Reinforced Concrete Columns Considering Shear-Flexure-Axial Load Interaction. Earthquake Engineering and Structural Dynamics J., 41(15), 2159–2175.
  • ⦁ Alsiwat, J.M., Saatcioglu, M., 1992. Reinforcement Anchorage Slip under Monotonic Loading. Journal of Structural Engineering. ASCE, 118(9), 2421-2438.
  • ⦁ Eligehausen, R., Popov, E.P., Bertero, V.V., 1983. Local Bond Stress-Slip Relationship of a Deformed Bar Under Generalized Excitations. Report No. UCB/EERC 83/23. Earthquake Engineering Research Center, University of California, Berkeley, 169.
  • ⦁ Otani, S., Sozen, M.A., 1972. Behavior of Multistory Reinforced Concrete Frames during Earthquakes.Structural Research Series No. 392 University of Illinois, Urbana, 551.
  • ⦁ Morita, S., Kaku, T., 1984. Slippage of Reinforcement in Beam-Column Joint of Reinforced Concrete Frame. Proceedings of the Eighth World Conference on Earthquake Engineering. San Francisco, July 1984. 477-484.
  • ⦁ Lehman, D.E., Moehle, J.P., 2000. Seismic Performance of Well-Confined Concrete Bridge Columns. Report No. PEER-1998/01. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 316.
  • ⦁ SEAOC, 1999. Recommended Lateral Force Requirements and Commentary, Seismology Committee, Structural Engineers Association of California, San Francisco, USA., 444.
  • ⦁ ACI Committee 318, 2002. Building Code Requirements for Structural Concrete and Commentary, ACI 318-02/318R-02. American Concrete Institute, Farmington Hills, Mich., 443.
  • ⦁ Caltrans. 2002. Caltrans Seismic Design Criteria, Version 1.3, California Department of Transportation, Sacramento, CA.
  • ⦁ Patwardhan, C., 2005. Strength and Deformation Modeling of Reinforced Concrete Columns. M.S. Thesis. The Ohio State University, Columbus, Ohio, 166.
  • ⦁ Vecchio, F.J., Collins, M.P., 1986. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Journal. 83(2), 219-231.
  • ⦁ Clough, R.W., 1966. Effect of Stiffness Degradation on Earthquake Ductility Requirements. Report 66-16. Structural and Materials Research. Structural Engineering Laboratory, UC, Berkeley.
  • ⦁ Takeda, T., Sozen, M.A., Neilsen, N.N., 1970. Reinforced Concrete Response to Simulated Earthquakes. Journal of the Structural Division, ASCE, 96(12), 2557-2573.
  • ⦁ Soleimani D., Popov, EP., Bertero, V.V., 1979. Nonlinear Beam Model for R/C Frame Analysis. In: Proceedings of 7th Conference on Electronic Computation, St. Louis.
  • ⦁ Roufaiel, M.S.L., Meyer, C., 1987. Analytical Modelling of Hysteretic Behavior of R/C Frames. Journal of Structural Engineering. ASCE, 113(3), 429-444.
  • ⦁ Kabeyasawa, T., Shiohara, H., Otani, S., Aoyama, H., 1983. Analysis of the Full Scale Seven Story Reinforced Concrete Test Structure. Journal of the Faculty of Engineering, The University of Tokyo, 37(2), 431–478.
  • ⦁ Dowell, R.K., Seible F., Wilson E.L., 1998. Pivot Hysteresis Model for Reinforced Concrete Members. ACI Structural Journal, 95(5), 607-617.
  • ⦁ SAP2000. Integrated Finite Element Analysis and Design of Structures, Computers and Structures Inc., Berkeley, California, USA.
  • ⦁ Mander, J. B., Priestley, J. N., Park, R., 1988. Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, ASCE, 114(8), 1804-1825.
  • ⦁ Inoue, K., Shimizu, N., 1988. Plastic Collapse Load of Steel Braced Frames Subjected to Horizontal Force. Journal of Structural and Construction Engineering, 388, 59- 69.
  • ⦁ Sezen, H., Setzler, E.J., 2008. Reinforcement Slip in Reinforced Concrete Columns. ACI Struct. J., 105(3), 280–289.
  • ⦁ Moehle, J.P., 1992. Displacement-Based Design of RC Structures Subjected to Earthquakes. Earthquake Spectra. EERI, 8(3), 403-428.
  • ⦁ Elwood K.J., Moehle J.P., Evaluation of Existing Reinforced Concrete Columns. 13th World Conference on Earthquake Engineering, Aug, 2004, Paper No. 579.
  • ⦁ Setzler, E.J., 2005. Modeling the Behavior of Lightly Reinforced Concrete Columns Subjected to Lateral Loads. M.S. Thesis. The Ohio State University, Columbus, Ohio, 202.
  • ⦁ Lodhi M.S., 2010. Response Estimation of Reinforced Concrete Columns Subjected to Lateral Loads. MS thesis, Ohio State Univ., Columbus, Ohio, 205.
  • ⦁ Chowdary, T., 2007. Hysteretic Modeling of Shear-Critical Reinforced Concrete Columns. Ms.Thesis. Ohio State Univ. Columbus, Ohio. 217.
  • ⦁ ATC-24, 1992. Guidelines for Cyclic Seismic Testing of Components of Steel Structures for Buildings. Report No. ATC-24, Applied Technology Council, Redwood City, CA.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sıla Avğın 0000-0003-4102-7747

M. Metin Köse This is me 0000-0002-7462-1577

Publication Date December 30, 2022
Published in Issue Year 2022 Volume: 37 Issue: 4

Cite

APA Avğın, S., & Köse, M. M. (2022). Simplified Nonlinear Analysis of RC Columns Exposed to Lateral Loads. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 1113-1126. https://doi.org/10.21605/cukurovaumfd.1230959