Research Article
BibTex RIS Cite

Design, Manufacturing and Evaluation of First Measurement Results of a Greenhouse Type Dryer

Year 2023, Volume: 38 Issue: 3, 623 - 632, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377207

Abstract

Food drying is defined as the dehumidification process from products to a safe limit and has been carried out with different methods for many years. In addition to the most widely used open sun method (under the direct sun), dryers with different method and technologies such as vacuum drying, freeze drying, greenhouse type dryer, microwave dryer, etc.) can be used for food drying. In this study, a hybrid dryer, which have an internally divided air solar collector to a forced convection and tunnel type greenhouse dryer, was designed and manufactured. To evaluate the first measurements in the study, grape drying experiments were carried out for one day in Osmaniye climatic conditions. Different parameters, such as air velocity, temperature, humidity, radiation, and product weight, were measured and recorded in the system. At the end of the study, it was seen that the greenhouse type drying system works without any problems. It has been determined that the temperature and humidity values at different points in the system vary during the experiment depending on solar radiation and can obtain a drying air temperature of about 60 °C at the collector outlet. In addition, it was determined that the dried grapes lost about 200 g of their total weight. It has been seen from the evaluations that the designed greenhouse type dryer can be used effectively in food drying applications.

References

  • 1. Boroze, T., Desmorieux, H., Méot, J.M., Marouzé, C., Azouma, Y., Napo, K., 2014. Inventory and Comparative Characteristics of Dryers Used in the Sub-Saharan Zone: Criteria Influencing Dryer Choice. Renewable and Sustainable Energy Reviews, 40, 1240-1259.
  • 2. Adenitan, A.A., Awoyale, W., Akinwande, B.A., Busie, M.D., Michael, S., 2011. Mycotoxin Profiles of Solar Tent-Dried and Open Sun-Dried Plantain Chips. Food Control, 119, 107467.
  • 3. Condori, M., Saravia, L., 2003. Analytical Model for the Performance of the Tunnel-Type Greenhouse Drier. Renewable Energy, 28(3), 467-485.
  • 4. Aghbashlo, M., Mobli, H., Rafiee, S., Madadlou, A., 2013. A Review on Exergy Analysis of Drying Processes and Systems. Renewable and Sustainable Energy Reviews, 22, 1-22.
  • 5. Sethi, V.P., Dhiman, M., 2020. Design, Space Optimization and Modelling of Solar-Cum-Biomass Hybrid Greenhouse Crop Dryer using Flue Gas Heat Transfer Pipe Network. Solar Energy, 206, 120-135.
  • 6. El Hage, H., Herez, A., Ramadan, M., Bazzi, H., Khaled, M., 2018. An Investigation on Solar Drying: A Review with Economic and Environmental Assessment. Energy, 157, 815-829.
  • 7. VijayaVenkataRaman, S., Iniyan, S., Goic, R., 2012. A Review of Solar Drying Technologies. Renewable and Sustainable Energy Reviews, 16(5), 2652-2670.
  • 8. ELkhadraoui, A., Kooli, S., Hamdi, I., Farhat, A., 2015. Experimental Investigation and Economic Evaluation of a New Mixed-Mode Solar Greenhouse Dryer for Drying of Red Pepper and Grape. Renewable Energy, 77, 1-8.
  • 9. Tiwari, S., Tiwari, G.N., 2016. Exergoeconomic Analysis of Photovoltaic-Thermal (PVT) Mixed Mode Greenhouse Solar Dryer. Energy, 114, 155-164.
  • 10. Jain, D., 2005. Modeling The Performance of Greenhouse with Packed Bed Thermal Storage on Crop Drying Application. Journal of Food Engineering, 71(2), 170-178.
  • 11. Chauhan, P.S., Kumar, A., Gupta, B., 2017. A Review on Thermal Models for Greenhouse Dryers. Renewable and Sustainable Energy Reviews, 75, 548-558.
  • 12. Badaoui, O., Hanini, S., Djebli, A., Haddad, B., Benhamou, A., 2019. Experimental and Modelling Study of Tomato Pomace Waste Drying in a New Solar Greenhouse: Evaluation of New Drying Models. Renewable Energy, 133, 144-155.
  • 13. Aymen, E.L., Hamdi, I., Kooli, S., Guizani, A., 2019. Drying of Red Pepper Slices in a Solar Greenhouse Dryer and Under Open Sun: Experimental and Mathematical Investigations. Innovative Food Science&Emerging Technologies, 52, 262-270.
  • 14. Saini, V., Tiwari, S., Jain, V.K., Tiwari, G.N., 2020. Performance Evaluation of Different Types PV Materials for PVTAC with Solar Drying System. Materials Today: Proceedings, 25, 544-550.
  • 15. Tiwari, S., Tiwari, G.N. 2016. Thermal Analysis of Photovoltaic-Thermal (PVT) Single Slope Roof Integrated Greenhouse Solar Dryer. Solar Energy, 138, 128-136.
  • 16. Kiburi, F.G., Kanali, C.L., Kituu, G.M., Ajwang, P.O., Ronoh, E.K., 2020. Performance Evaluation and Economic Feasibility of a Solar-Biomass Hybrid Greenhouse Dryer for Drying Banana Slices. Renewable Energy Focus, 34, 60-68.
  • 17. Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B., Müller, J., 2020. Review of Solar Dryers for Agricultural Products in Asia and Africa: An Innovation Landscape Approach. Journal of Environmental Management, 268, 110730.
  • 18. Rizal, T.A., Muhammad, Z., 2018. Fabrication and Testing of Hybrid Solar-Biomass Dryer for Drying Fish. Case Studies in Thermal Engineering, 12, 489-496.
  • 19. Condorí, M., Saravia, L., 1998. The Performance of Forced Convection Greenhouse Driers. Renewable Energy, 13(4), 453-469.
  • 20. Kumar, A., Tiwari, G.N. 2007. Effect of Mass on Convective Mass Transfer Coefficient During Open Sun and Greenhouse Drying of Onion Flakes. Journal of Food Engineering, 79(4), 1337-1350.
  • 21. Chauhan, P.S., Kumar, A., 2018. Thermal Modeling and Drying Kinetics of Gooseberry Drying Inside North Wall Insulated Greenhouse Dryer. Applied Thermal Engineering, 130, 587-597.
  • 22. Janjai, S., Intawee, P., Kaewkiew, J., Sritus, C., Khamvongsa, V., 2011. A Large-Scale Solar Greenhouse Dryer using Polycarbonate Cover: Modeling and Testing in a Tropical Environment of Lao People’s Democratic Republic. Renewable Energy, 36(3), 1053-1062.
  • 23. Saydam, D.B., Çerçi, K.N., Hürdoğan, E., Özalp, C., 2021. İç Bölmelere Sahip Havalı Bir Güneş Kolektörünün Deneysel Olarak İncelenmesi. Tesisat Mühendisliği, 46-54, 184.
  • 24. Jindarat, W., Rattanadecho, P., Vongpradubchai, S., 2011. Analysis of Energy Consumption in Microwave and Convective Drying Process of Multi-Layered Porous Material Inside a Rectangular Wave Guide. Experimental Thermal and Fluid Science, 35(4), 728-737.
  • 25. Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P. 2011. Introduction to Heat Transfer. John Wiley&Sons. USA, 122, 697-705.
  • 26. Bala, B.K., Mondol, M.R.A., Biswas, B.K., Chowdury, B.L.D., Janjai, S., 2003. Solar Drying of Pineapple using Solar Tunnel Drier. Renew Energy, 28, 183-190.
  • 27. Zomorodian A., Zare, D., Ghasemkhani, H., 2007. Optimization and Evaluation of a Semicontinuous Solar Dryer For Cereals (Rice, etc.). Desalination, 209, 129-135.
  • 28. Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Bala, B.K., Nagle, M., 2009. Experimental and Simulated Performance of a PV-Ventilated Solar Greenhouse Dryer for Drying of Peeled Longan and Banana. Sol Energy, 83, 1550-1565.
  • 29. Rathore, N.S., Panwar, N.L., 2010. Experimental Studies on Hemi Cylindrical Walk-In Type Solar Tunnel Dryer for Grape Drying. Appl Energy, 87, 2764-2767.

Sera Tipi Bir Kurutucunun Tasarımı, İmalatı ve İlk Ölçüm Sonuçlarının Değerlendirilmesi

Year 2023, Volume: 38 Issue: 3, 623 - 632, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377207

Abstract

Gıda kurutma, ürünlerden güvenli bir sınıra kadar nem alma işlemi olarak tanımlanmakta ve çok uzun yıllardan beri farklı yöntemler ile gerçekleştirilebilmektedir. En yaygın kullanılan açık sergi yönteminin (direk güneş altına serilerek) yanı sıra vakum kurutma, dondurarak kurutma, sera tipi kurutucu, mikrodalga kurutucu vb. gibi farklı yöntem ve teknolojileri içeren kurutucular da gıda kurutulması için kullanılabilmektedir. Bu çalışmada, zorlanmış taşınımlı tünel tipi bir sera kurutucu ve iç bölmelere ayrılmış havalı bir güneş kolektöre sahip hibrit bir kurutucu tasarlanarak imal edilmiş ve ilk ölçümlerin değerlendirilebilmesi amacıyla Osmaniye iklim şartlarında bir gün boyunca üzüm kurutma deneyleri gerçekleştirilmiştir. Sistemde hava hızı, sıcaklık, nem, ışınım ve ürün ağırlığı gibi farklı parametreler ölçülerek kayıt altına alınmıştır. Çalışma sonunda, tasarlanıp kurulan sera tipi kurutma sisteminin sorunsuz bir şekilde çalıştığı görülmüştür. Sistemde yer alan farklı noktalardaki sıcaklık ve nem değerlerinin güneş ışınımına bağlı olarak deney süresince değişim gösterdiği, kolektör çıkışında yaklaşık 60 °C kurutma havası sıcaklığı elde edilebildiği ayrıca kurutulan üzümlerin toplam ağırlığından yaklaşık 200 g kaybetmiş olduğu tespit edilmiştir. Yapılan değerlendirmelerden, tasarlanan sera tipi kurutucunun gıda kurutma uygulamalarında etkin bir şekilde kullanılabileceği görülmüştür.

References

  • 1. Boroze, T., Desmorieux, H., Méot, J.M., Marouzé, C., Azouma, Y., Napo, K., 2014. Inventory and Comparative Characteristics of Dryers Used in the Sub-Saharan Zone: Criteria Influencing Dryer Choice. Renewable and Sustainable Energy Reviews, 40, 1240-1259.
  • 2. Adenitan, A.A., Awoyale, W., Akinwande, B.A., Busie, M.D., Michael, S., 2011. Mycotoxin Profiles of Solar Tent-Dried and Open Sun-Dried Plantain Chips. Food Control, 119, 107467.
  • 3. Condori, M., Saravia, L., 2003. Analytical Model for the Performance of the Tunnel-Type Greenhouse Drier. Renewable Energy, 28(3), 467-485.
  • 4. Aghbashlo, M., Mobli, H., Rafiee, S., Madadlou, A., 2013. A Review on Exergy Analysis of Drying Processes and Systems. Renewable and Sustainable Energy Reviews, 22, 1-22.
  • 5. Sethi, V.P., Dhiman, M., 2020. Design, Space Optimization and Modelling of Solar-Cum-Biomass Hybrid Greenhouse Crop Dryer using Flue Gas Heat Transfer Pipe Network. Solar Energy, 206, 120-135.
  • 6. El Hage, H., Herez, A., Ramadan, M., Bazzi, H., Khaled, M., 2018. An Investigation on Solar Drying: A Review with Economic and Environmental Assessment. Energy, 157, 815-829.
  • 7. VijayaVenkataRaman, S., Iniyan, S., Goic, R., 2012. A Review of Solar Drying Technologies. Renewable and Sustainable Energy Reviews, 16(5), 2652-2670.
  • 8. ELkhadraoui, A., Kooli, S., Hamdi, I., Farhat, A., 2015. Experimental Investigation and Economic Evaluation of a New Mixed-Mode Solar Greenhouse Dryer for Drying of Red Pepper and Grape. Renewable Energy, 77, 1-8.
  • 9. Tiwari, S., Tiwari, G.N., 2016. Exergoeconomic Analysis of Photovoltaic-Thermal (PVT) Mixed Mode Greenhouse Solar Dryer. Energy, 114, 155-164.
  • 10. Jain, D., 2005. Modeling The Performance of Greenhouse with Packed Bed Thermal Storage on Crop Drying Application. Journal of Food Engineering, 71(2), 170-178.
  • 11. Chauhan, P.S., Kumar, A., Gupta, B., 2017. A Review on Thermal Models for Greenhouse Dryers. Renewable and Sustainable Energy Reviews, 75, 548-558.
  • 12. Badaoui, O., Hanini, S., Djebli, A., Haddad, B., Benhamou, A., 2019. Experimental and Modelling Study of Tomato Pomace Waste Drying in a New Solar Greenhouse: Evaluation of New Drying Models. Renewable Energy, 133, 144-155.
  • 13. Aymen, E.L., Hamdi, I., Kooli, S., Guizani, A., 2019. Drying of Red Pepper Slices in a Solar Greenhouse Dryer and Under Open Sun: Experimental and Mathematical Investigations. Innovative Food Science&Emerging Technologies, 52, 262-270.
  • 14. Saini, V., Tiwari, S., Jain, V.K., Tiwari, G.N., 2020. Performance Evaluation of Different Types PV Materials for PVTAC with Solar Drying System. Materials Today: Proceedings, 25, 544-550.
  • 15. Tiwari, S., Tiwari, G.N. 2016. Thermal Analysis of Photovoltaic-Thermal (PVT) Single Slope Roof Integrated Greenhouse Solar Dryer. Solar Energy, 138, 128-136.
  • 16. Kiburi, F.G., Kanali, C.L., Kituu, G.M., Ajwang, P.O., Ronoh, E.K., 2020. Performance Evaluation and Economic Feasibility of a Solar-Biomass Hybrid Greenhouse Dryer for Drying Banana Slices. Renewable Energy Focus, 34, 60-68.
  • 17. Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B., Müller, J., 2020. Review of Solar Dryers for Agricultural Products in Asia and Africa: An Innovation Landscape Approach. Journal of Environmental Management, 268, 110730.
  • 18. Rizal, T.A., Muhammad, Z., 2018. Fabrication and Testing of Hybrid Solar-Biomass Dryer for Drying Fish. Case Studies in Thermal Engineering, 12, 489-496.
  • 19. Condorí, M., Saravia, L., 1998. The Performance of Forced Convection Greenhouse Driers. Renewable Energy, 13(4), 453-469.
  • 20. Kumar, A., Tiwari, G.N. 2007. Effect of Mass on Convective Mass Transfer Coefficient During Open Sun and Greenhouse Drying of Onion Flakes. Journal of Food Engineering, 79(4), 1337-1350.
  • 21. Chauhan, P.S., Kumar, A., 2018. Thermal Modeling and Drying Kinetics of Gooseberry Drying Inside North Wall Insulated Greenhouse Dryer. Applied Thermal Engineering, 130, 587-597.
  • 22. Janjai, S., Intawee, P., Kaewkiew, J., Sritus, C., Khamvongsa, V., 2011. A Large-Scale Solar Greenhouse Dryer using Polycarbonate Cover: Modeling and Testing in a Tropical Environment of Lao People’s Democratic Republic. Renewable Energy, 36(3), 1053-1062.
  • 23. Saydam, D.B., Çerçi, K.N., Hürdoğan, E., Özalp, C., 2021. İç Bölmelere Sahip Havalı Bir Güneş Kolektörünün Deneysel Olarak İncelenmesi. Tesisat Mühendisliği, 46-54, 184.
  • 24. Jindarat, W., Rattanadecho, P., Vongpradubchai, S., 2011. Analysis of Energy Consumption in Microwave and Convective Drying Process of Multi-Layered Porous Material Inside a Rectangular Wave Guide. Experimental Thermal and Fluid Science, 35(4), 728-737.
  • 25. Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P. 2011. Introduction to Heat Transfer. John Wiley&Sons. USA, 122, 697-705.
  • 26. Bala, B.K., Mondol, M.R.A., Biswas, B.K., Chowdury, B.L.D., Janjai, S., 2003. Solar Drying of Pineapple using Solar Tunnel Drier. Renew Energy, 28, 183-190.
  • 27. Zomorodian A., Zare, D., Ghasemkhani, H., 2007. Optimization and Evaluation of a Semicontinuous Solar Dryer For Cereals (Rice, etc.). Desalination, 209, 129-135.
  • 28. Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Bala, B.K., Nagle, M., 2009. Experimental and Simulated Performance of a PV-Ventilated Solar Greenhouse Dryer for Drying of Peeled Longan and Banana. Sol Energy, 83, 1550-1565.
  • 29. Rathore, N.S., Panwar, N.L., 2010. Experimental Studies on Hemi Cylindrical Walk-In Type Solar Tunnel Dryer for Grape Drying. Appl Energy, 87, 2764-2767.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Energy, Mechanical Engineering (Other)
Journal Section Articles
Authors

Doğan Burak Saydam 0000-0001-8453-2917

Kamil Neyfel Çerçi 0000-0002-3126-707X

Ertaç Hürdoğan 0000-0003-1054-9964

Publication Date October 18, 2023
Published in Issue Year 2023 Volume: 38 Issue: 3

Cite

APA Saydam, D. B., Çerçi, K. N., & Hürdoğan, E. (2023). Sera Tipi Bir Kurutucunun Tasarımı, İmalatı ve İlk Ölçüm Sonuçlarının Değerlendirilmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 623-632. https://doi.org/10.21605/cukurovaumfd.1377207