Research Article
BibTex RIS Cite

Production of Hydrogel with Alginate and Pericardial Fluid for use in Tissue Engineering Applications

Year 2023, Volume: 38 Issue: 4, 1077 - 1082, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410697

Abstract

Hydrogels are used in the treatment of soft tissue damage, controlled drug release systems, tissue/organ production with 3D bioprinters, smart material production, and many other tissue engineering studies. Although polymers obtained from natural polymers or synthetically produced polymers are used in hydrogel production, they may have various biocompatibility problems. In this study, Pericardial fluid structure (PFS) was used to increase the biocompatibility of the alginate and was used in the production of bioink for use in 3D bioprinters. PFS is a structure isolated from pericardial fluid (PF) and consists of complex components that are very similar to natural Extracellular Matrix (ECM) both morphologically and in content. According to the results of SEM images, the collagen-elastin fiber network was clearly observed in the groups with PFS added, since PFS contains high levels of collagen and elastin proteins. It was concluded that the biocompatibility of the material was also increased thanks to the structure similar to the natural ECM in the alginate hydrogels with PFS added.

References

  • 1. Drury, J.L., Mooney, D.J., 2003. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications, Biomaterials, 24, 4337-4351.
  • 2. Wu, C.J., Gaharwar, A.K., Chan, B.K., Schmidt, G., 2011. Mechanically Tough Pluronic F127/Laponite Nanocomposite Hydrogels from Covalently and Physically Cross-Linked Networks. Macromolecules, 44(20), 8215-8224.
  • 3. Tibbitt, M.W., Anseth, K.S., 2009. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Bioengineering and Biotechnology, 103, 655-63.
  • 4. Pawan, P., Mayur, P., Ashwin, S., 2011. Role of Natural Polymers in Sustained Release Drug Delivery System: Applications and Recent Approaches. International Research Journal of Pharmacy, 2(9), 6-11.
  • 5. Hoffman, A.S., 2002. Hydrogels for Biomedical Applications. Advanced Drug Delivery Reviews, 54(1), 3-12.
  • 6. Zhang, Y., Dai, J., Yan, L., Sun, Y., 2020. Intra-Articular Injection of Decellularized Extracellular Matrices in the Treatment of Osteoarthritis in Rabbits. PeerJ, 8, e8972.
  • 7. Peña, B., Laughter, M., Jett, S., Rowland, T.J., Taylor, M., Mestroni, L., Park, D. 2018. Injectable Hydrogels for Cardiac Tissue Engineering. Macromolecular Bioscience, 18(6), e1800079.
  • 8. Awad, N.K., Niu, H., Ali, U., Morsi, Y.S., Lin, T., 2018. Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review. Membranes, 8(1), 15.
  • 9. Sankaran, K.K., Krishnan, U.M., Sethuraman, S., 2014. Axially Aligned 3D Nanofibrous Grafts of PLA–PCL for Small Diameter Cardiovascular Applications. Journal of Biomaterials Science, 25(16), 1791-1812.
  • 10. Yahia, L., 2015. History and Applications of Hydrogels. Journal of Biomedical Sciencies, 4(2), 13.
  • 11. Das, S., Pati, F., Choi, Y.J., Rijal, G., Shim, J. H., Kim, S.W., Ray, A.R., Cho, D.W., Ghosh, S. 2015. Bioprintable, Cell-Laden Silk Fibroin–Gelatin Hydrogel Supporting Multilineage Differentiation of Stem Cells for Fabrication of Three-Dimensional Tissue Constructs. Acta Biomaterialia, 11, 233-246.
  • 12. Sanmartín-Masiá, E., Poveda-Reyes, S., Gallego Ferrer, G., 2017. Extracellular Matrix–Inspired Gelatin/Hyaluronic Acid Injectable Hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(6), 280-288.
  • 13. Augst, A.D., Kong, H.J., Mooney, D.J., 2006. Alginate Hydrogels as Biomaterials. Macromolecular Bioscience, 6(8), 623-633.
  • 14. Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J.C., Thom, D., 1973. Biological Interactions Between Polysaccharides and Divalent Cations: The Egg Box Model. FEBS Letters, 32, 195-198.
  • 15. Kulseng, B., Skjåk-Braek, G., Ryan, L., Andersson, A., King, A., Faxvaag, A., Espevik, T., 1999. Transplantation of Alginate Microcapsules: Generation of Antibodies Against Alginates and Encapsulated Porcine Islet-Like Cell Clusters. Transplantation, 67, 978-984.
  • 16. Paige, K.T., Cima, L.G., Yaremchuk, M.J., Vacanti, J.P., Vacanti, C.A., 1995. Injectable Cartilage. Plastic Reconstructive Surgery, 96, 1390-1400.
  • 17. Paige, K.T., Cima, L.G., Yaremchuk, M.J., Schloo, B.L., Vacanti, J.P., Vacanti, C.A., 1996. De Novo Cartilage Generation Using Calcium Alginate-Chondrocyte Constructs. Plastic Reconstructive Surgery, 97, 168-180.
  • 18. Skjak-Braerk, G., Grasdalen, H., Smidsrod, O., 1989. Inhomogeneous Polysaccharide Ionic Gels. Carbohydrate Polymers, 10, 31-54.
  • 19. Saul, J.M., Williams, D.F., 2011. Hydrogels in Regenerative Medicine. In: Modjarrad K, Ebnesajjad S, Editors. Handbook of Polymer Applications in Medicine and Medical Devices. Elsevier; 279-302.
  • 20. Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K.H., Kim, S.K., 2015. Alginate Composites for Bone Tissue Engineering: A Review. International Journal of Biological Macromolecules, 72, 269-281.
  • 21. Wang, Y., 2018. Programmable Hydrogels. Biomaterials, 178, 663-680.
  • 22. Gombotz, W.R., Wee, S.F., (1998). Protein Release from Alginate Matrices. Advanced Drug Delivery Reviews, 31, 267-285.
  • 23. Lee, K.Y., Mooney, D.J., 2012. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci., 37, 106-126.
  • 24. Leone, G., Torricelli, P., Chiumiento, A., Facchini, A., Barbucci, R., (2008) Amidic Alginate Hydrogel for Nucleus Pulposus Replacement. Journal of Biomedical Materials Research Part A, 84(2), 391-340.
  • 25. Venkatesan, J., Jayakumar, R., Anil, S., Chalisserry, E.P., Pallela, R., Kim, S.-K., 2015. Development of Alginate-Chitosan-Collagen Based Hydrogels for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 5, 458-464.
  • 26. Montalbano, G., Toumpaniari, S., Popov, A., Duan, P., Chen, J., Dalgarno, K., Scott, W.E., Ferreira, A.M., 2018. Synthesis of Bioinspired Collagen/Alginate/Fibrin Based Hydrogels for Soft Tissue Engineering. Materials Science and Engineering: C, Materials for Biological Applications, 91, 236-246.
  • 27. Yang, X., Lu, Z., Wu, H., Li, W., Zheng, L., Zhao, J., 2018. Collagen-Alginate as Bioink for Three-Dimensional (3D) Cell Printing Based Cartilage Tissue Engineering. Materials Science and Engineering: C, Materials for Biological Applications, 83, 195-201.
  • 28. Mahou, R., Vlahos, A.E., Shulman, A.S., Sefton, M.V., 2018. Interpenetrating Alginate-Collagen Polymer Network Microspheres for Modular Tissue Engineering. American Chemical Society. Biomaterials Science and Engineering, 4(11), 3704-3712.
  • 29. Kim, G., Ahn, S.H., Kim, Y., Cho, Y., Chun, W., 2011. Coaxial Structured Collagen–Alginate Scaffolds: Fabrication, Physical Properties, and Biomedical Application for Skin Tissue Regeneration. Journal of Materials Chemistry, 21, 6165-6172.
  • 30. Sönmezer, D., Latifoğlu, F., Toprak, G., Baran, M., 2023. A Native Extracellular Matrix Material for Tissue Engineering Applications: Characterization of Pericardial Fluid. J Biomed Mater Res., 111(9), 1629-1639.
  • 31. Sönmezer, D., Latifoglu, F., Toprak, G., Düzler, A., Işoglu, I.A., 2021. Pericardialfluid and Vascular Tissue Engineering: A Preliminary Study. BiomedMater Eng., 32(2), 101-113.
  • 32. Sönmezer, D., Latifoglu, F., Işoglu, I.A., Düzler, A., Toprak, G., Ceylan, D., 2016. Vascular Tissue Production by Using Cell Component and Biomaterial. Med Technol Cong (Tıptekno'16), 205-208.
  • 33. Latifoglu, F., Sönmezer, D., Toprak, G., Düzler, A., Işoglu, I.A., Ceylan, D., 2018. Cell Isolation from Bovine Pericardial Fluid and Culturing for Next Tissue Engineering Applications. Eurasia Proc Sci Technol Eng Math., 4, 224-229.
  • 34. Sönmezer, D., Latifoglu, F., Toprak, G., Düzler, A., 2019. Effect of Vascular Endo-Thelial Growth Factor (VEGF) on Cells Isolated From Pericardial Fluid. Med. Technol Cong., 177-180.
  • 35. Hvass, U., O'Brien, M.F., 1998. The Stentless Cryolife-O'Brien Aortic Porcinexenograft: A Five-Year Follow-up. Ann Thorac Surg., 66, 134-138.
  • 36. Garlick, R.B., O'Brien, M.F., 1997. The CryoLife-O'Brien Composite Stentlessporcine Aortic Xenograft Valve in 118 Patients. Jpn Circ J., 61, 682-686.

Doku Mühendisliği Uygulamalarında Kullanılmak üzere Aljinat ve Perikardiyal Sıvı ile Hidrojel Üretimi

Year 2023, Volume: 38 Issue: 4, 1077 - 1082, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410697

Abstract

Yumuşak doku hasarının tedavisinde, kontrollü ilaç salınım sistemlerinde, 3D biyoyazıcılarla doku/organ üretiminde, akıllı malzeme üretiminde ve daha pek çok doku mühendisliği çalışmalarında hidrojeller kullanılmaktadır. Doğal polimerlerden elde edilen polimerler ya da sentetik olarak üretilen polimerler hidrojel üretiminde kullanılıyor olmasına rağmen çeşitli biyouyumluluk problemleri taşıyabilmektedir. Bu çalışmada 3D biyoyazıcılarda biyomürekkep üretiminde kullanılan aljinatın biyouyumluluğunu artırmak için Pericardial fluid structure (PFS) kullanılmıştır. PFS Perikardiyal sıvıdan (PF) izole edilen bir yapı olup doğal Ekstrasellüler Matrikse (ECM) hem morfolojik hem de içerik olarak çok benzeyen kompleks bileşenlerden oluşmaktadır. Dondurarak kurutulmuş olan PFS değişen oranlarda aljinat ile karıştırılarak oluşturulan grupların karşılaştırması ve analizi için SEM görüntüleme yapılmıştır. SEM görüntüleri sonuçlarına göre PFS yüksek oranda kolajen ve elastin proteini içerdiği için kolajen-elastin fiber ağı PFS eklenen gruplarda belirgin bir şekilde gözlenmiştir. PFS eklenen aljinat hidrojellerinde doğal ECM’ye benzeyen yapı daha iyi oluşturularak malzeme biyouyumluluğunun da arttırıldığı sonucuna varılmıştır.

References

  • 1. Drury, J.L., Mooney, D.J., 2003. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications, Biomaterials, 24, 4337-4351.
  • 2. Wu, C.J., Gaharwar, A.K., Chan, B.K., Schmidt, G., 2011. Mechanically Tough Pluronic F127/Laponite Nanocomposite Hydrogels from Covalently and Physically Cross-Linked Networks. Macromolecules, 44(20), 8215-8224.
  • 3. Tibbitt, M.W., Anseth, K.S., 2009. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Bioengineering and Biotechnology, 103, 655-63.
  • 4. Pawan, P., Mayur, P., Ashwin, S., 2011. Role of Natural Polymers in Sustained Release Drug Delivery System: Applications and Recent Approaches. International Research Journal of Pharmacy, 2(9), 6-11.
  • 5. Hoffman, A.S., 2002. Hydrogels for Biomedical Applications. Advanced Drug Delivery Reviews, 54(1), 3-12.
  • 6. Zhang, Y., Dai, J., Yan, L., Sun, Y., 2020. Intra-Articular Injection of Decellularized Extracellular Matrices in the Treatment of Osteoarthritis in Rabbits. PeerJ, 8, e8972.
  • 7. Peña, B., Laughter, M., Jett, S., Rowland, T.J., Taylor, M., Mestroni, L., Park, D. 2018. Injectable Hydrogels for Cardiac Tissue Engineering. Macromolecular Bioscience, 18(6), e1800079.
  • 8. Awad, N.K., Niu, H., Ali, U., Morsi, Y.S., Lin, T., 2018. Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review. Membranes, 8(1), 15.
  • 9. Sankaran, K.K., Krishnan, U.M., Sethuraman, S., 2014. Axially Aligned 3D Nanofibrous Grafts of PLA–PCL for Small Diameter Cardiovascular Applications. Journal of Biomaterials Science, 25(16), 1791-1812.
  • 10. Yahia, L., 2015. History and Applications of Hydrogels. Journal of Biomedical Sciencies, 4(2), 13.
  • 11. Das, S., Pati, F., Choi, Y.J., Rijal, G., Shim, J. H., Kim, S.W., Ray, A.R., Cho, D.W., Ghosh, S. 2015. Bioprintable, Cell-Laden Silk Fibroin–Gelatin Hydrogel Supporting Multilineage Differentiation of Stem Cells for Fabrication of Three-Dimensional Tissue Constructs. Acta Biomaterialia, 11, 233-246.
  • 12. Sanmartín-Masiá, E., Poveda-Reyes, S., Gallego Ferrer, G., 2017. Extracellular Matrix–Inspired Gelatin/Hyaluronic Acid Injectable Hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(6), 280-288.
  • 13. Augst, A.D., Kong, H.J., Mooney, D.J., 2006. Alginate Hydrogels as Biomaterials. Macromolecular Bioscience, 6(8), 623-633.
  • 14. Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J.C., Thom, D., 1973. Biological Interactions Between Polysaccharides and Divalent Cations: The Egg Box Model. FEBS Letters, 32, 195-198.
  • 15. Kulseng, B., Skjåk-Braek, G., Ryan, L., Andersson, A., King, A., Faxvaag, A., Espevik, T., 1999. Transplantation of Alginate Microcapsules: Generation of Antibodies Against Alginates and Encapsulated Porcine Islet-Like Cell Clusters. Transplantation, 67, 978-984.
  • 16. Paige, K.T., Cima, L.G., Yaremchuk, M.J., Vacanti, J.P., Vacanti, C.A., 1995. Injectable Cartilage. Plastic Reconstructive Surgery, 96, 1390-1400.
  • 17. Paige, K.T., Cima, L.G., Yaremchuk, M.J., Schloo, B.L., Vacanti, J.P., Vacanti, C.A., 1996. De Novo Cartilage Generation Using Calcium Alginate-Chondrocyte Constructs. Plastic Reconstructive Surgery, 97, 168-180.
  • 18. Skjak-Braerk, G., Grasdalen, H., Smidsrod, O., 1989. Inhomogeneous Polysaccharide Ionic Gels. Carbohydrate Polymers, 10, 31-54.
  • 19. Saul, J.M., Williams, D.F., 2011. Hydrogels in Regenerative Medicine. In: Modjarrad K, Ebnesajjad S, Editors. Handbook of Polymer Applications in Medicine and Medical Devices. Elsevier; 279-302.
  • 20. Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K.H., Kim, S.K., 2015. Alginate Composites for Bone Tissue Engineering: A Review. International Journal of Biological Macromolecules, 72, 269-281.
  • 21. Wang, Y., 2018. Programmable Hydrogels. Biomaterials, 178, 663-680.
  • 22. Gombotz, W.R., Wee, S.F., (1998). Protein Release from Alginate Matrices. Advanced Drug Delivery Reviews, 31, 267-285.
  • 23. Lee, K.Y., Mooney, D.J., 2012. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci., 37, 106-126.
  • 24. Leone, G., Torricelli, P., Chiumiento, A., Facchini, A., Barbucci, R., (2008) Amidic Alginate Hydrogel for Nucleus Pulposus Replacement. Journal of Biomedical Materials Research Part A, 84(2), 391-340.
  • 25. Venkatesan, J., Jayakumar, R., Anil, S., Chalisserry, E.P., Pallela, R., Kim, S.-K., 2015. Development of Alginate-Chitosan-Collagen Based Hydrogels for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 5, 458-464.
  • 26. Montalbano, G., Toumpaniari, S., Popov, A., Duan, P., Chen, J., Dalgarno, K., Scott, W.E., Ferreira, A.M., 2018. Synthesis of Bioinspired Collagen/Alginate/Fibrin Based Hydrogels for Soft Tissue Engineering. Materials Science and Engineering: C, Materials for Biological Applications, 91, 236-246.
  • 27. Yang, X., Lu, Z., Wu, H., Li, W., Zheng, L., Zhao, J., 2018. Collagen-Alginate as Bioink for Three-Dimensional (3D) Cell Printing Based Cartilage Tissue Engineering. Materials Science and Engineering: C, Materials for Biological Applications, 83, 195-201.
  • 28. Mahou, R., Vlahos, A.E., Shulman, A.S., Sefton, M.V., 2018. Interpenetrating Alginate-Collagen Polymer Network Microspheres for Modular Tissue Engineering. American Chemical Society. Biomaterials Science and Engineering, 4(11), 3704-3712.
  • 29. Kim, G., Ahn, S.H., Kim, Y., Cho, Y., Chun, W., 2011. Coaxial Structured Collagen–Alginate Scaffolds: Fabrication, Physical Properties, and Biomedical Application for Skin Tissue Regeneration. Journal of Materials Chemistry, 21, 6165-6172.
  • 30. Sönmezer, D., Latifoğlu, F., Toprak, G., Baran, M., 2023. A Native Extracellular Matrix Material for Tissue Engineering Applications: Characterization of Pericardial Fluid. J Biomed Mater Res., 111(9), 1629-1639.
  • 31. Sönmezer, D., Latifoglu, F., Toprak, G., Düzler, A., Işoglu, I.A., 2021. Pericardialfluid and Vascular Tissue Engineering: A Preliminary Study. BiomedMater Eng., 32(2), 101-113.
  • 32. Sönmezer, D., Latifoglu, F., Işoglu, I.A., Düzler, A., Toprak, G., Ceylan, D., 2016. Vascular Tissue Production by Using Cell Component and Biomaterial. Med Technol Cong (Tıptekno'16), 205-208.
  • 33. Latifoglu, F., Sönmezer, D., Toprak, G., Düzler, A., Işoglu, I.A., Ceylan, D., 2018. Cell Isolation from Bovine Pericardial Fluid and Culturing for Next Tissue Engineering Applications. Eurasia Proc Sci Technol Eng Math., 4, 224-229.
  • 34. Sönmezer, D., Latifoglu, F., Toprak, G., Düzler, A., 2019. Effect of Vascular Endo-Thelial Growth Factor (VEGF) on Cells Isolated From Pericardial Fluid. Med. Technol Cong., 177-180.
  • 35. Hvass, U., O'Brien, M.F., 1998. The Stentless Cryolife-O'Brien Aortic Porcinexenograft: A Five-Year Follow-up. Ann Thorac Surg., 66, 134-138.
  • 36. Garlick, R.B., O'Brien, M.F., 1997. The CryoLife-O'Brien Composite Stentlessporcine Aortic Xenograft Valve in 118 Patients. Jpn Circ J., 61, 682-686.
There are 36 citations in total.

Details

Primary Language English
Subjects Tissue Engineering, Biomedical Engineering (Other)
Journal Section Articles
Authors

Dilek Sönmezer 0000-0002-9017-2943

Fatma Latifoğlu 0000-0001-7582-7537

Publication Date December 28, 2023
Published in Issue Year 2023 Volume: 38 Issue: 4

Cite

APA Sönmezer, D., & Latifoğlu, F. (2023). Production of Hydrogel with Alginate and Pericardial Fluid for use in Tissue Engineering Applications. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 1077-1082. https://doi.org/10.21605/cukurovaumfd.1410697