Research Article
BibTex RIS Cite

Determination of the Hydraulic Conductivity Behavior of Seaweed Added Zeolite-Bentonite Mixtures in the Presence of Temperature with Empirical Relationships

Year 2024, Volume: 39 Issue: 3, 617 - 623, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1559943

Abstract

The temperature factor is of great importance in areas that directly affect the environment and engineering parameters of liners, such as solid waste storage areas. It is known that the temperature value increases as a result of the degradation of waste in these areas, and temperature changes affect the engineering properties of the soils. Properties vary depending on the soil type, and additives that can be used to improve the engineering properties of soils come to the fore. One of the most important criteria is that the additive to be used is sustainable and environmentally friendly. Zostera marina, with its terminological name, or dried seaweed an aquatic plant and is a sustainable, low-cost material used in thermal insulation. In this study, dried seaweed additive was added to zeolite-bentonite mixtures and compression parameters were determined under room temperature and 40°C. Hydraulic conductivity values of seaweed-added mixtures were determined with the help of volumetric compression coefficient (mv) and consolidation coefficient (cv) parameters and empirical relationships obtained as a result of consolidation tests. Its potential to be used as a buffer material in the presence of temperature in solid waste storage areas evaluated. The tests results showed that the seaweed additive decreased the hydraulic conductivity values of zeolite-bentonite mixtures at room temperature and under 40°C.

References

  • 1. Jefferson, I., Rogers, C.D.F., (1998). Liquid limit and the temperature sensitivity of clays. Eng. Geol., 49(2), 95-109.
  • 2. Cekerevac, C., Laloui, L., (2004). Experimental study of thermal effects on the mechanical behaviour of a clay. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 209-228.
  • 3. Tchobanoglous, G., Theisen, H., Vigil, S., (1993). Integrated solid waste management: Engineering principles and management issues. Irwin/McGraw-Hill, Boston, MA.
  • 4. Yeşiller, N., Hanson, J.L., Liu, W.L., (2005). Heat generation in municipal solid waste landfills. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1330-1344.
  • 5. Hanson, J.L., Yeşiller, N., Oettle, N.K., (2010). Spatial and temporal temperature distributions in municipal solid waste landfills. Journal of Environmental Engineering, 136(8), 804-814.
  • 6. Hanson, J.L., Yeşiller, N., Onnen, M.T., Liu, W.L., Oettle, N.K., Marinos, J.A., (2013). Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Management, 33(10), 1993-2000.
  • 7. Tupsakhare, S., Moutushi, T., Castaldi, M.J., Barlaz, M.A., Luettich, S., Benson, C.H., (2020). The impact of pressure, moisture and temperature on pyrolysis of municipal solid waste under simulated landfill conditions and relevance to the field data from elevated temperature landfill. Science of the Total Environment, 723, 138031.
  • 8. Konrad, J.M., (1989). Physical processes during freeze thaw cycles in clayey silts. Cold Regions Science and Technology, 16(3), 291-303.
  • 9. Qi, Z., Hampton, C.R., Shin, R., Barkla, B.J., White, P.J., Schachtman, D.P., (2008). The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J. Exp. Bot., 59, 595-607.
  • 10. Villar, M.V., Gómez-Espina, R., Lloret, A., (2010). Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite. Journal of Rock Mechanics and Geotechnical Engineering, 2, 171-178.
  • 11. Sultan, N., (1997). Etude du comportement thermo-mécanique de l'argile de Boom:expériences et modélisation. PhD Thesis, Ecole Nationale des Ponts et Chaussées, 217.
  • 12. Delage, P., Sultan, N., Cui, Y.J., (2000). On the thermal consolidation of boom clay. Canadian Geotechnical Journal, 37, 343-354.
  • 13. Chen, G.J., Maes, T., Vandervoort, F., Sillen, X., Van Marcke, P., Honty, M., Vanderniepen, P., (2014). Thermal impact on damaged boom clay and opalinus clay: permeameter and isostatic tests with μCT scanning. Rock Mech. Rock. Eng., 47(1), 87-99.
  • 14. Jarad, N., (2016). Temperature impact on the consolidation and creep behaviour of compacted clayey soils. Mechanics of materials [physics.class-ph]. Université de Lorraine. English. NNT:2016LORR0251.
  • 15. Le, T.M., Fatahi, B., Khabbaz, H., (2012). Viscous behaviour of soft clay and inducing factors. Geotechnical and Geological Engineering, 30, 1069-1083.
  • 16. Green, W.J., (1969). The influence of several factors on the rate of secondary compression of soil. Master Thesis, The Missouri University of Science and Technology, Rolla, Missouri, USA.
  • 17. ASTM: D698-12, (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA, USA, 1-13.
  • 18. ASTM International, (2011). ASTM D2435/D2435M-11: standard test methods for one-dimensional consolidation properties of soils using incremental loading.
  • 19. EduRev, https://edurev.in/t/125039/Taylor%E2%80%99s-Square-Root-of-Time-Fitting-Method-Determ, Access date: 08.02.2024.
  • 20. Abuel-Naga, H. M., Bergado, D. T., Soralump, S., Rujivipat, P., (2005). Thermal consolidation of soft Bangkok clay. Lowland Technology International, 7, 13-21.
  • 21. Delage, P., Cui, Y.J., Sultan, N., (2004). On the thermal behavior of boom clay. Proceeding Eurosafe 2004 Conference. Berlin, Germany.
  • 22. Youssef, M.S., Sabry, A., El Ramli A.H., (1961). Temperature changes and their effects on some physical properties of soils. Proceedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering, 2, 419-421, Paris.
  • 23. Bouazza, A., Abuel-Naga, H.M., Gates, W.P., Laloui, L., (2008). Temperature effects on volume change and hydraulic properties of geosynthetic clay liners. The First Pan American Geosynthetics Conference & Exhibition, Cancun, Mexico.
  • 24. Cho, W.J., Lee, J.O., Chun, K.S., (1999). The temperature effects on hydraulic conductivity of compacted bentonite. Applied Clay Science, 14, 47-58.
  • 25. Alpaydın, Ş.G., (2019). An investigation of effects of boron additives on the permeability and shear strength behavior of sand bentonite mixtures under high temperatures. Master Thesis, Dokuz Eylül University Graduate School of Natural and Applied Sciences, İzmir.
  • 26. Alpaydin, S.G., Yukselen-Aksoy, Y., (2021). Üleksit katkısının kum-bentonit karışımlarının mühendislik özelliklerine etkisi. Politeknik Dergisi, 24(4), 1345-1352.
  • 27. Moen, Einar, (1997). Biological degradation of brown seaweeds. Doktor ingeniør, Department of Biotechnology Norwegian University of Science and Technology, 69.

Deniz Yosunu Katkılı Zeolit-Bentonit Karışımlarının Sıcaklık Varlığında Hidrolik İletkenlik Davranışının Ampirik İlişkilerle Belirlenmesi

Year 2024, Volume: 39 Issue: 3, 617 - 623, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1559943

Abstract

Katı atık depolama alanlarında çevre ve mühendislik parametreleri açısından sıcaklık faktörü de önem arz etmektedir. Bu alanlarda atıkların bozunması sonucunda sıcaklık değerinin yükseldiği bilinmektedir ve sıcaklık değişimleri zeminlerin mühendislik özelliklerini etkilemektedir. Zemin cinsine bağlı olarak da özellikler değişim göstermektedir ve zeminlerin mühendislik özelliklerinin iyileştirilmesinde kullanılabilecek katkı malzemeleri ön plana çıkmaktadır. Burada en önemli kriterlerden biri kullanılacak katkının sürdürülebilir ve çevreyle dost olmasıdır. Terminolojik adıyla Zostera marina yani kurutulmuş deniz yosunu, bir su bitkisi olup sürdürülebilir, maliyeti düşük ve ısı yalıtımında kullanılan bir materyaldir. Bu çalışmada kurutulmuş yosun katkısı, zeolit-bentonit karışımlarına eklenerek oda sıcaklığı ve 40° C sıcaklık altında sıkışma parametreleri belirlenmiştir. Konsolidasyon deneyleri sonucunda elde edilen hacimsel sıkışma katsayısı (mv) ve konsolidasyon katsayısı (cv) parametreleri ve ampirik ilişkiler yardımı ile yosun katkılı karışımların hidrolik iletkenlik değerleri belirlenmiştir. Katı atık depolama alanlarında sıcaklık varlığında tampon malzeme olarak kullanılma potansiyeli değerlendirilmiştir. Deney sonuçları yosun katkısının, zeolit-bentonit karışımlarının hidrolik iletkenlik değerlerini oda sıcaklığı ve 40 °C sıcaklık altında azalttığını göstermiştir.

References

  • 1. Jefferson, I., Rogers, C.D.F., (1998). Liquid limit and the temperature sensitivity of clays. Eng. Geol., 49(2), 95-109.
  • 2. Cekerevac, C., Laloui, L., (2004). Experimental study of thermal effects on the mechanical behaviour of a clay. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 209-228.
  • 3. Tchobanoglous, G., Theisen, H., Vigil, S., (1993). Integrated solid waste management: Engineering principles and management issues. Irwin/McGraw-Hill, Boston, MA.
  • 4. Yeşiller, N., Hanson, J.L., Liu, W.L., (2005). Heat generation in municipal solid waste landfills. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1330-1344.
  • 5. Hanson, J.L., Yeşiller, N., Oettle, N.K., (2010). Spatial and temporal temperature distributions in municipal solid waste landfills. Journal of Environmental Engineering, 136(8), 804-814.
  • 6. Hanson, J.L., Yeşiller, N., Onnen, M.T., Liu, W.L., Oettle, N.K., Marinos, J.A., (2013). Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Management, 33(10), 1993-2000.
  • 7. Tupsakhare, S., Moutushi, T., Castaldi, M.J., Barlaz, M.A., Luettich, S., Benson, C.H., (2020). The impact of pressure, moisture and temperature on pyrolysis of municipal solid waste under simulated landfill conditions and relevance to the field data from elevated temperature landfill. Science of the Total Environment, 723, 138031.
  • 8. Konrad, J.M., (1989). Physical processes during freeze thaw cycles in clayey silts. Cold Regions Science and Technology, 16(3), 291-303.
  • 9. Qi, Z., Hampton, C.R., Shin, R., Barkla, B.J., White, P.J., Schachtman, D.P., (2008). The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J. Exp. Bot., 59, 595-607.
  • 10. Villar, M.V., Gómez-Espina, R., Lloret, A., (2010). Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite. Journal of Rock Mechanics and Geotechnical Engineering, 2, 171-178.
  • 11. Sultan, N., (1997). Etude du comportement thermo-mécanique de l'argile de Boom:expériences et modélisation. PhD Thesis, Ecole Nationale des Ponts et Chaussées, 217.
  • 12. Delage, P., Sultan, N., Cui, Y.J., (2000). On the thermal consolidation of boom clay. Canadian Geotechnical Journal, 37, 343-354.
  • 13. Chen, G.J., Maes, T., Vandervoort, F., Sillen, X., Van Marcke, P., Honty, M., Vanderniepen, P., (2014). Thermal impact on damaged boom clay and opalinus clay: permeameter and isostatic tests with μCT scanning. Rock Mech. Rock. Eng., 47(1), 87-99.
  • 14. Jarad, N., (2016). Temperature impact on the consolidation and creep behaviour of compacted clayey soils. Mechanics of materials [physics.class-ph]. Université de Lorraine. English. NNT:2016LORR0251.
  • 15. Le, T.M., Fatahi, B., Khabbaz, H., (2012). Viscous behaviour of soft clay and inducing factors. Geotechnical and Geological Engineering, 30, 1069-1083.
  • 16. Green, W.J., (1969). The influence of several factors on the rate of secondary compression of soil. Master Thesis, The Missouri University of Science and Technology, Rolla, Missouri, USA.
  • 17. ASTM: D698-12, (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA, USA, 1-13.
  • 18. ASTM International, (2011). ASTM D2435/D2435M-11: standard test methods for one-dimensional consolidation properties of soils using incremental loading.
  • 19. EduRev, https://edurev.in/t/125039/Taylor%E2%80%99s-Square-Root-of-Time-Fitting-Method-Determ, Access date: 08.02.2024.
  • 20. Abuel-Naga, H. M., Bergado, D. T., Soralump, S., Rujivipat, P., (2005). Thermal consolidation of soft Bangkok clay. Lowland Technology International, 7, 13-21.
  • 21. Delage, P., Cui, Y.J., Sultan, N., (2004). On the thermal behavior of boom clay. Proceeding Eurosafe 2004 Conference. Berlin, Germany.
  • 22. Youssef, M.S., Sabry, A., El Ramli A.H., (1961). Temperature changes and their effects on some physical properties of soils. Proceedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering, 2, 419-421, Paris.
  • 23. Bouazza, A., Abuel-Naga, H.M., Gates, W.P., Laloui, L., (2008). Temperature effects on volume change and hydraulic properties of geosynthetic clay liners. The First Pan American Geosynthetics Conference & Exhibition, Cancun, Mexico.
  • 24. Cho, W.J., Lee, J.O., Chun, K.S., (1999). The temperature effects on hydraulic conductivity of compacted bentonite. Applied Clay Science, 14, 47-58.
  • 25. Alpaydın, Ş.G., (2019). An investigation of effects of boron additives on the permeability and shear strength behavior of sand bentonite mixtures under high temperatures. Master Thesis, Dokuz Eylül University Graduate School of Natural and Applied Sciences, İzmir.
  • 26. Alpaydin, S.G., Yukselen-Aksoy, Y., (2021). Üleksit katkısının kum-bentonit karışımlarının mühendislik özelliklerine etkisi. Politeknik Dergisi, 24(4), 1345-1352.
  • 27. Moen, Einar, (1997). Biological degradation of brown seaweeds. Doktor ingeniør, Department of Biotechnology Norwegian University of Science and Technology, 69.
There are 27 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Articles
Authors

Esra Güneri 0000-0002-1840-2118

Publication Date October 3, 2024
Submission Date February 19, 2024
Acceptance Date September 27, 2024
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Güneri, E. (2024). Determination of the Hydraulic Conductivity Behavior of Seaweed Added Zeolite-Bentonite Mixtures in the Presence of Temperature with Empirical Relationships. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 617-623. https://doi.org/10.21605/cukurovaumfd.1559943